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Abstract. To tackle the potentially hard task of defining the reward function in a Markov
Decision Process (MDPs), a new approach, called Interactive Value Iteration (IVI) has
recently been proposed by Weng and Zanuttini (2013). This solving method, which in-
terweaves elicitation and optimization phases, computes a (near) optimal policy without
knowing the precise reward values. The procedure as originally presented can be improved
in order to reduce the number of queries needed to determine an optimal policy. The key
insights are that 1) asking queries should be delayed as much as possible, avoiding asking
queries that might not be necessary to determine the best policy, 2) queries should be
asked by following a priority order because the answers to some queries can enable to re-
solve some other queries, 3) queries can be avoided by using heuristic information to guide
the process. Following these ideas, a modified IVI algorithm is presented and experimental
results show a significant decrease in the number of queries issued.

1 Introduction

In problems of sequential decision-making under uncertainty, an agent has to repeatedly
choose according to her current state an action whose consequences are uncertain in
order to maximize a certain criterion in the long run. Such problems can be represented
as Markov Decision Processes (MDPs) [9]. In this model, the outcome of each action
is stochastic and numeric rewards are granted each time an action is performed. The
numerical values of rewards are defined either by the environment or by a human user
and the goal of the agent is to choose a policy (which specifies which action to take in
every state) such as to maximize the expectation of the discounted sum of future rewards.
The latter case, where a human must specify the reward values, represents a difficulty
when using MDP methods as this task can be cognitively hard, even for an expert user.
And yet, it is well known that the optimal policy is extremely sensitive to the numerical
reward values. This problem has motivated much work aiming at mitigating the burden
of defining precisely the reward function. In the literature, four main approaches can be
distinguished, although their boundaries may be blurry.

Robust approach. In the first approach, the parameters of the MDP (i.e., rewards and
possibly also probabilities) are assumed to be imprecisely known. A natural way [2, 7]
to handle such situation is to search for robust solutions, i.e., solutions that are as good
as possible even in the worst case. However, this method often leads to solutions that
are too pessimistic. A better approach is based on minimax regret [21]. Here, one tries
to minimize the gap between the value of the best policy (after the true reward values
are revealed) and that of the chosen policy. However, this leads to NP-hard problems.

Non standard decision criterion. A second approach is to change the decision criterion
optimized by the agent. Different criteria have been proposed. For instance, Delage and



Mannor [6] proposed to use a criterion based on quantiles (on distributions over history
values). Unfortunately, by changing the decision criterion, one loses all the nice properties
satisfied by the standard criterion (e.g., existence of an optimal stationary deterministic
policy). Weng [17, 18] proposed two new decision criteria that could be used when only
the order over rewards, but not the exact values, is known. In both cases, all or some of
the nice properties of the standard criterion are preserved. However, those approaches
have not yet been experimentally evaluated.

Preference learning. Another approach, which has been mainly developed for rein-
forcement learning (i.e., a context more general than MDP), aims at learning the reward
values, either from demonstrations (live [1] or from recorded logs [8]) or from interactions
with a human tutor [15]. One drawback of this approach is that it generally assumes
that demonstrations from human tutors can be easily translated into the state/action
representation of the learning agent, which may be difficult as humans and agents evolve
in different state/action spaces.

Preference elicitation. A final approach assumes a human tutor is present and the
agent may query her to get more precise information about reward values. In a series of
papers, Regan and Boutilier [10–13] show how to compute policies which optimize min-
max regret with respect to all candidate functions, and discuss how this criterion can be
used to generate informative queries to ask the tutor about the true reward function. It-
eratively issuing such queries is shown to allow convergence to the optimal policy for this
function. However the problem of computing such robust policy reveals to be NP-hard
[21] and their algorithm issues bound queries which can be cognitively difficult to answer.
Following the same line of research, Weng and Zanuttini [19], revisited a well known al-
gorithm for solving MDPs, Value Iteration, by incorporating the elicitation process in
the solving procedure. In this new algorithm called Interactive Value Iteration (IVI), a
human tutor is queried about multi-sets of rewards when the information acquired so far
does not allow to continue solving the MDP. This procedure is appealing as answering
comparison queries is much less cognitively demanding than giving the reward function
to optimize. However, the original IVI procedure does not try to explicitly minimize the
number of queries issued and may lead to a prohibitive effort for the tutor.

In this paper, we address the problem of modifying IVI in order to reduce the num-
ber of queries issued. To that aim, we propose a variation of IVI based on the ideas
that 1) delaying the queries open the possibility that some of them meanwhile become
unnecessary, 2) the order in which the queries are asked matters, and this order should
be optimized, 3) queries can be avoided by using heuristic information to guide the iter-
ation process. We show empirically that these combined techniques can greatly reduce
the number of queries issued.

The paper is organized as follows. After recalling the main features of interactive
value iteration (Section 2), we present our proposed optimizations (Section 3). Finally,
we provide the results of our numerical tests (Section 4), that show a significant decrease
in the number of queries issued.



2 Background

2.1 Markov Decision Process

A Markov Decision Process (MDP) [9] is defined by a tuple M = (S,A, p, r, γ) where
S is a finite set of states, A is a finite set of actions, p : S × A → P(S) is a transition
function with P(S) being the set of probability distributions over states, r : S ×A→ R
is a reward function and γ ∈ [0, 1[ is a discount factor.

A (stationary, deterministic) policy π : S → A associates an action to each state.
Such a policy is evaluated by a value function vπ : S → R defined as follows:

vπ(s) = r(s, π(s)) + γ
∑
s′∈S

p(s, π(s), s′)vπ(s′) (1)

We also introduce the Q-function, Qπ : S ×A→ R, defined as follows:

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s, a, s′)vπ(s′) (2)

Then a preference relation is defined over policies by: π % π′ ⇔ ∀s ∈ S, vπ(s) ≥ vπ
′
(s).

A solution to an MDP is a policy, called optimal policy, that ranks the highest with
respect to %. Such a policy can be found by solving the Bellman equations.

v∗(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

p(s, a, s′)v∗(s′) (3)

As can be seen, the preference relation % over policies is directly induced by the reward
function r. In a setting where the reward function is not known with certainty, taking
the maximum over actions (as done in (3)) can be problematic. In this paper we will
query ordinal information from a tutor to unveil the maximal actions.

2.2 Ordinal Reward MDP

In this paper, while the rewards’ numerical values are assumed to be unknown, we
suppose that the order over rewards is given. Such situation can be represented as an
Ordinal Reward MDP (ORMDP) [17] defined by a tuple (S,A, p, r̂, γ) where the reward
function r̂ : S × A → E takes its values in a set E = {r1 < r2 . . . < rk} of unknown
ordered rewards.

In order to count the number of each unknown reward obtained by a policy, an
ORMDP can be reformulated as a Vector Reward MDP (VMDP) (S,A, p, r, γ) where
r(s, a) is the vector in Rk whose ith component is 1 for r̂(s, a) = ri, and 0 on the other
components. Like in standard MDPs, in such a VMDP we can define the value function
vπ and the Q-function Q

π
of a policy π by :

vπ(s) = r(s, π(s)) + γ
∑
s′∈S

p(s, π(s), s′)vπ(s′) (4)

Q
π
(s, a) = r(s, a) + γ

∑
s′∈S

p(s, a, s′)vπ(s′) (5)



where additions and multiplications are componentwise. The i-th component of a vector
v ∈ Rk can be interpreted as the expected number of unknown reward ri.

Therefore, a value function in a state can be interpreted as a multi-set or a bag of
elements of E. Now comparing policies amount to comparing vectors. Interactive value
iteration [19] is a procedure inspired from value iteration to find the optimal policy
according to the true unknown reward function by querying when needed an expert
for comparisons of two bags of elements of E. We present in the next section how this
algorithm works.

2.3 Interactive Value Iteration

In order to find an (approximate) optimal policy for an ORMDP with an initially un-
known preference relation over vectors (i.e., unknown reward function), Weng and Zanut-
tini [19] developed a variant of value iteration, named Interactive Value Iteration (IVI),
where the agent may ask a tutor which of two sequences of rewards should be preferred.
An example of query is “r1 + r3 ≥ 2r2?”, meaning “is receiving r1 and r3 as good as
receiving 2r2?”. As the tutor answers queries, the set of admissible reward functions
shrinks and more vectors can be compared without querying the tutor.

At the beginning of the process, the agent only knows the order over rewards, i.e.,
r1 < r2 < . . . < rk, and knows that she can set without loss of generality r1 to 0
and rk to 1 [18]. This initial knowledge is represented by a set K of linear constraints.
When having to choose the best of two value vectors v and v′ in a given state (see
Algorithm 2), function StDominates(v, v′) compares the two vectors with respect to the
following dominance relation (which is analogous to stochastic dominance):

∀j = 1, . . . , k Gj(v) ≥ Gj(v′) (6)

where Gj(v) =
∑k

i=j vi. In case no dominance is found, the next step is to check whether
one of the two vectors is necessarily preferred to the other given the constraints in K.
The function KDominates(v, v′) checks whether v is not less preferred than v′ (denoted
by v � v′) by solving the following linear program:

z∗K = min (v − v′) · r (7)

s.t. r ∈ C(K) (8)

where the dot in (7) denotes the inner product and C(K) the set of reward functions
r = (r1, . . . , rk) satisfying all constraints in K. We distinguish the following three cases:

– A non-negative optimal value for the objective function (i.e., z∗K ≥ 0) implies that
for any possible reward function, v � v′.

– In case of negativity of the optimal value (i.e., z∗K < 0), KDominates(v, v′) is called
to check if v′ � v for all reward function satisfying constraints in K.

– If the two vectors can still not be compared, the tutor is asked which of v or v′ should
be preferred. A query is a 2-subset {v, v′} from which the tutor picks her preferred
element (if indifferent, she arbitrarily picks one of them). If she picks v, then v � v′,



otherwise v′ � v. If v � v′ (resp. v′ � v), then the new constraint (v − v′).r ≥ 0
(resp. (v′ − v).r ≥ 0) is added to K.

Algorithm 1 summarizes the IVI procedure. It uses the functions Init, that returns
the initial set K of linear constraints induced by r1 < r2 < . . . < rk, and getBest (Algo-
rithm 2) that returns the best of two vectors. The function getBest calls first function
StDominates, then function KDominates, and finally function query (Algorithm 3) if no
dominance is found. Note that StDominates(v, v′) = KDominates(v, v′) for initial set
K, and that StDominates(v, v′) ⇒ KDominates(v, v′) in all cases. Nevertheless, the IVI
procedure takes advantage of the computational efficiency of primitive StDominates to
save some calls to KDominates.

Weng and Zanuttini [19] showed that the number of queries used by IVI is polynomial
in the size of the MDP. However, as the tutor is queried each time two vectors cannot be
compared, it seems that a more sophisticated approach could greatly reduce the number
of queries needed by the algorithm. In the next section, we propose a modified version
of IVI that integrates several techniques in order to reduce the number of queries.

Algorithm 1: IVI [19]

Data: S,A, p, r̂, γ, E, ε
Result: vt

1 t← 0
2 compute r from r̂
3 K ← Init(E)
4 for s ∈ S do
5 v0(s)← (0, . . . , 0)

6 repeat
7 t← t+ 1
8 for s ∈ S do
9 best← (0, . . . , 0)

10 for a ∈ A do
11 v ← r(s, a) +

γ
∑

s′∈S p(s, a, s
′)vt−1(s′)

12 (best,K)←
getBest(best, v,K)

13 vt(s)← best

14 until ||vt − vt−1|| < ε
15 return vt

Algorithm 2: getBest

Data: v, v′,K
Result: (v,K)
if StDominates(v, v′) then

return (v,K)

if StDominates(v′, v) then
return (v′,K)

if KDominates(v, v′,K) then
return (v,K)

if KDominates(v′, v,K) then
return (v′,K)

(best,K)← query(v, v′,K) return (best,K)

Algorithm 3: query

Data: v, v′,K
Result: (v,K)
Ask query {v, v′}
if v � v′ then

return (v,K ∪ {(v − v′).r ≥ 0})
else

return (v′,K ∪ {(v′ − v).r ≥ 0})

3 Modified Interactive Value Iteration

Interactive Value Iteration is appealing for users as answering comparison queries is
significantly less cognitively demanding than directly defining the reward function. And



yet to be a reasonable alternative, the number of queries needs to be as low as possible.
As stated in the introduction, several ideas are investigated to address this problem:

– delaying queries in order to avoid asking some unnecessary queries;

– prioritizing queries in order to ask the most informative ones first;

– allowing small mistakes in the dominance tests in the early stages in order to antici-
pate the shrinking of the set of admissible reward functions.

3.1 Delaying the queries

In Algorithm 1, the tutor is queried whenever two vectors v and v′ cannot be compared.
The intuition behind the improvement that we propose is that by delaying the query
phase after all vectors (each vector refers to a possible action in a given state) are
generated we might benefit from the fact that new dominance relations might appear
later on. Indeed when trying to assess which of three vectors v1, v2, and v3 is the best,
we may be able to find that v3 dominates both v1 and v2; this is enough for us, even
if we ignore which is better between v1 and v2. Therefore querying which of v1 and v2
is best, as would do Algorithm 1, is unnecessary. Thus, delaying the querying step from
the loop over actions will prevent asking some unnecessary queries. For this purpose, we
replace Lines 8 to 13 in Algorithm 1 by the following lines:

for s ∈ S do

Q(s)← ∅
for a ∈ A do

Q(s, a)← r(s, a) + γ
∑

s′∈S p(s, a, s
′)vt−1(s

′)
Q(s)← Q(s) ∪ {Q(s, a)}

Q(s)← StDFilter(Q(s))
Q(s)← KDFilter(Q(s))
while |Q(s)| > 1 do

Let {v, v′} ⊆ Q(s)
( ,K)← query(v, v′,K)
Q(s)← KDFilter(Q(s))

vt(s)← unique vector of Q(s)

where primitives StDFilter and KDFilter are given in Algorithms 4 and 5: the former
checks the dominance described by Equation 6 for each pair of vectors v, v′ in Q and
returns the set of undominated vectors; the latter does the same thing for K-dominance.

Basically, Q(s) is a set of vectors (discounted collections of unknown rewards) asso-
ciated to a state s while Q(s, a) is related to the value of taking an action a in state s.
As in the original IVI, we filter out dominated and K-dominated vectors before starting
the querying phase. Finally, in the while loop we query the user about pairs of non-
dominated vectors in Q(s) until Q(s) contains a single element, that is assigned to vt(s)
in the last line.



Algorithm 4: StDFilter

Data: Q
Result: Filtered Q
for v ∈ Q do

for v′ ∈ Q with v 6= v′ do
if StDominates(v, v′) then

Q← Q \ {v′}

return Q

Algorithm 5: KDFilter

Data: Q
Result: Filtered Q
for v ∈ Q do

for v′ ∈ Q with v 6= v′ do
if KDominates(v, v′) then

Q← Q \ {v′}

return Q

3.2 Prioritizing the queries

By delaying the queries out of the loop over actions and even out of the loop over states,
one can choose to ask queries in a different order than the sequential one induced by
the original IVI procedure. Certainly this order will count as queries are not all equally
informative. Thus queries that we presume might solve many others should be asked
first. Defining a relevance score to guide the querying process seems to be a promising
technique to curb the number of queries necessary to solve the MDP. For this purpose,
we now replace Lines 8 to 13 in Algorithm 1 by the following lines where function X -
score (with X ∈ {Q,K,S}) is one of the priority functions described below, the value
of which is intended to reflect how informative a query is, and Queries is the set of all
unsolved queries over S :

for s ∈ S do

Q(s)← ∅
for a ∈ A do

Q(s, a)← r(s, a) + γ
∑

s′∈S p(s, a, s
′)vt−1(s

′)
Q(s)← Q(s) ∪ {Q(s, a)}

Q(s)← StDFilter(Q(s))
Q(s)← KDFilter(Q(s))

Queries←
⋃
s
{{v, v′} ⊆ Q(s) : v 6= v′}

while Queries 6= ∅ do
{v, v′} ← arg max{X -score({v, v′}) : {v, v′} ⊆ Queries}
( ,K)← query(v, v′,K)
for s ∈ S do

Q(s) = KDFilter(Q(s))

Queries←
⋃
s
{{v, v′} ⊆ Q(s) : v 6= v′}

Note that here the best vector returned by query(v, v′,K) does not need to be saved.

To define priority functions evaluating the informative value of a query, several meth-
ods could be considered. Here we propose two types of heuristics. The first type aims at
reducing as much as possible the set of remaining unsolved queries (i.e., focusing on the
impact on the cardinality of Queries, the set of unsolved queries) while the second type



tries to reduce as much as possible the set of admissible reward functions (i.e., focusing
on the impact on the polytope C(K)).

Strategies aiming at reducing the cardinality of set Queries. Let {v, v′} be a query. If we
know that, for instance, v is preferred to v′, this induces an additional constraint that
reduces the polytope C(K). This new, smaller, polytope may induce new relations of
K-dominance — for instance, we might be able to check that for all r ∈ C(K∪{v � v′})
a vector v1 is preferred to another vector v2 — in other words the information carried
in an answer to a query can generalize to other queries. A natural idea to evaluate the
information value of a query is then to count the number of queries that can be resolved
if v � v′, the number of queries resolved if, on the other hand, v′ � v and to take the
minimum between the two values (see Algorithm 6). This relevance score will be called
Q-score (Q for Queries). Let Qval(v, v

′) be the number of queries decided if v � v′; the
priority of query {v, v′} is computed as

Q-score({v, v′}) = min{Qval(v, v′), Qval(v′, v)}. (9)

This idea is simple and natural but comes at the cost of solving 4(N−1) linear programs
(one for each call to KDominates) in the worst case if N is the number of queries.

Algorithm 6: Q-score

Data: v, v′,K, Queries
Result: Q-score({v, v′})
sv, sv′ ← 0, 0
Kv ← K ∪ {(v − v′).r ≥ 0}
Kv′ ← K ∪ {(v′ − v).r ≥ 0}
for {v1, v2} ∈ Queries do

if KDominates(v2, v1,Kv) or KDominates(v1, v2,Kv) then sv ← sv + 1
if KDominates(v2, v1,Kv′) or KDominates(v1, v2,Kv′) then sv′ ← sv′ + 1

return min{sv, sv′}

Strategies aiming at directly reducing polytope C(K). Another idea is to use the optimal
objective values given by procedure KDominates. Consider a query {v, v′} ∈ Queries.
Let Kval(v, v′) be the optimal value of the linear program described by Equations 7-8,
normalized by ||v − v′||. Since neither v nor v′ could be filtered, both Kval(v, v′) and
Kval(v′, v) are necessarily negative. We define the priority of query {v, v′} as

K-score({v, v′}) = min{|Kval(v, v′)|, |Kval(v′, v)|}. (10)

The idea of K-score is that Kval(v, v′) and Kval(v′, v) give us an approximation of the
volume of the polytope on both sides of the constraint defined by the query (see Figure 1).
Thus it is likely that a high K-score query will reduce largely the polytope no matter
the answer of the tutor. This alternative has the benefits of its algorithmic simplicity.
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Fig. 1: Illustration of K-score.
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Fig. 2: Illustration of S-score

Indeed the computation of values Kval(v, v′) and Kval(v′, v) only requires to solve small
linear programs.

Alternatively, following the same idea, we sampled rewards in the admissible reward
space (using a Gibbs sampler [5]). Let SR be the set of samples generated and consider
a query {v, v′} ∈ Queries. Let Sval(v, v′) = |{r ∈ SR : (v − v′).r ≥ 0}|. We define the
priority of query {v, v′} as its S-score (S for sampling):

S-score({v, v′}) = min{Sval(v, v′),Sval(v′, v)}. (11)

The numbers of samples on each side of the hyperplane defined by the query {v, v′}
gives us an approximation of the volumes of the polytope on each side of the query
(see Figure 2). Hence a query which has roughly 50% of samples on both sides will
approximately cut the polytope in two equal volumes and it will be deemed a very
informative query according to this strategy. A similar idea was used by Rosenthal and
Veloso [14] in a context where rewards are a weighted sum of known subrewards and the
elicitation procedure searches for the unknown weights.

3.3 Allowing small mistakes in the early stages

The modification of IVI we propose in this subsection aims at making a compromise
between the number of iterations of the procedure and the number of queries issued.
The idea is to take the “risk” of slowering convergence by avoiding as much as possible
to ask queries in the early stages. For this purpose, the condition z∗K ≥ 0 in function
KDominates (we recall that z∗K corresponds to the optimal value of program (7-8)) is
loosened: a vector v′ is considered to be dominated if z∗K ≥ − err(t), where err(t) ≥ 0
is a function that decreases to 0 with t. Clearly, this trick has the potentiality to avoid
many queries during the early stage with the possible drawback of temporarily driving
IVI towards a misleading direction. To insure that this modification will not prevent the
algorithm to converge towards the optimal value function, we modify the main loop of
IVI so that the algorithm will keep running until err(t) ≤ δ with δ << 1.

3.4 Synthesis

Algorithm 7 synthesizes our modifications to IVI. The initialization of the algorithm
(lines 1 to 5) is unchanged. The main loop (lines 6 to 25) iterates until the value function



converges to the optimal value function and the err(t) function converges to 0. From line
8 to line 14, we fill the sets of possible value vectors for each state by computing and
appending the Q-values of the corresponding state-action pairs (lines 8 to 12) and then
filter out the vectors (lines 13 and 14) that we already know are dominated by using
functions StDFilter (Algorithm 4) and KDFilter (Algorithm 5). This latter algorithm
now takes an extra parameter (i.e., err(t)) for implementing the idea presented in the
previous subsection. In the second part of the loop we consider the set of all unsolved
queries Queries composed of pairs of non-dominated vectors of a same state. While
there exists unsolved queries we select and issue the most informative query (lines 17
and 18) using the priority score, X -score (X ∈ {Q,K,S}). Once the tutor answered the
query, the acquired information may enable to filter other vectors (lines 19 and 20) thus
reducing the number of unsolved queries (line 21). Once all the queries are solved, each
set Q(s) is composed of a single element, corresponding to vt(s) (the value vector of s
for the next time step). The optimal value function for M = (S, A, p, r̂, γ) is returned.
By using standard bookkeeping techniques, we could return the optimal policy as well.

Algorithm 7: Modified IVI

Data: S, A, p, r̂, γ, E, ε, err
Result: vt

1 t← 0
2 compute r from r̂
3 K ← Init(E)
4 for s ∈ S do
5 v0(s)← (0, . . . , 0)

6 repeat
7 t← t+ 1
8 for s ∈ S do

9 Q(s)← ∅
10 for a ∈ A do

11 Q(s, a)← r(s, a) + γ
∑

s′∈S p(s, a, s
′)vt−1(s′)

12 Q(s)← Q(s) ∪ {Q(s, a)}

13 Q(s)← StDFilter(Q(s))

14 Q(s)← KDFilter(Q(s), err(t))

15 Queries←
⋃
s

{{v, v′} ⊆ Q(s) : v 6= v′}

16 while Queries 6= ∅ do
17 {v, v′} ← arg max{X -score({v, v′}) : {v, v′} ⊆ Queries}
18 ( ,K)← query(v, v′,K)
19 for s ∈ S do

20 Q(s) = KDFilter(Q(s), err(t))

21 Queries←
⋃
s

{{v, v′} ⊆ Q(s) : v 6= v′}

22 /*each Q(s) is now a singleton*/
23 for s ∈ S do

24 vt = Q(s)

25 until ||vt − vt−1|| < ε and err(t) < δ
26 return vt
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4 Numerical Tests

We tested our approach on three different domains: randomly generated MDPs, au-
tonomic computing [4] and a simulated setting of personalized assistance to impaired
people (Coach domain [3])1. The original IVI and the improved version described in
Section 3 were coded in python using Gurobi 6.0 as an LP solver. The discount factor γ
is set to 0.95, ε to 10−3, δ to 10−7 and err(t) = e−t. The number of samples used by the
S-score is 5000. All numeric results are averaged over 20 runs.

Random MDPs. We first compared IVI and different variations of our improved IVI on
randomly generated MDPs; Given fixed n, m, k (the numbers of states, of actions and of
different types of rewards), we randomly generate the transition function assuming that
each state/action pair (s, a) has exactly blog2(n)c successors (the successors are chosen
uniformly from the set of states) and transition probabilities are obtained by sampling
between 0 and 1 and then normalizing. The type of reward of each pair (s, a) is picked
from the uniform categorical distribution r1, . . . , rk; the numerical values are randomly
generated in interval [0, 1] and reordered in order to be consistent.

In Figures 3 (the number of queries asked as a function of the number of states n;
the number of rewards k = |E| is fixed to 10 and m to 5) and 4 (the number of queries
asked as a function of the number |E| of different ordinal rewards; the number of states
n is fixed to 50 and m to 5) we compare the different priority scores that can be used
to choose the next query to ask; the graph shows that all three techniques (Q-score,
K-score and S-score) are similarly effective with S-score performing best (note that the
strategies depicted in Figure 3 uses the heuristic of allowing small mistakes in the early
iterations, see Section 3.3).

1 In both the autonomic computing domain and in Coach, we randomly generated the transition values
and the rewards in such a way to satisfy the constraints imposed by the problem domain.
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states for different query strategies.
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rewards for different query strategies.

In Figure 5 we compare the impact of the different improvements that we described
in Subsections 3.1-3.3 with the performance of the original IVI (the number of rewards
k = |E| is fixed to 10 and m to 5). For the queries’ priority we focus on the S-score since
this seemed to be the best performing strategy. As expected, IVI asks the highest number
of queries (around 80 with 100 states; 120 in random MDPs with 300 states); delaying
the moment of asking queries already gives a very significant advantage (around 60 and
85 queries are asked with 100 and 300 states). If we additionally ask queries according
to the priority induced by the S-score, the number of queries reduces even more (around
45 and 55 queries for 100, 300 states); but surprisingly this improvement is less than the
improvement obtained by the combination of delaying the queries and the heuristic of
allowing small errors in the initial iterations (with no query priority). The best results are
obtained by combining the S-score with the “error” heuristic (about 40 queries with 300
states). Interestingly, with our improvements, the number of queries asked by modified
IVI seems too grow very slowly with respect to the number of states.

Figure 6 compares the same strategies but with different numbers of rewards (i.e.,
k = |E|), the number of states n being fixed to 50 and m to 5. By comparing Fig-
ure 5 with Figure 6 we can see that parameter k impacts much more the number of
queries than parameter n; especially when considering the version of IVI including all
our improvements (denoted as “Delayed + S-score + err” in the plots).

Autonomic Computing. We also applied our algorithm on the domain of autonomic
computing [4]. In this domain, we assume there are κ application server elements on
which N available resources have to be assigned. A feasible allocation is an integer
vector a = (a1, . . . , aκ) with

∑κ
i=1 ai ≤ N . The client’s demand (changing over time) is

an integer vector d = (d1, . . . , dκ) representing κ levels of demand in {1, . . . , D}. A state
of the MDP is a vector (a, d) defining the current allocation and the current demand.



An action is the adoption of a new allocation m = (m1, . . . ,mκ). The reward of taking
action m in state (a, d) is r((a, d),m) = u(a, d)−c(a, d,m) where u(a, d) =

∑κ
i=1 u(ni, di)

is the sum of non-decreasing utility-functions u(ai, di) and c(a, d,m) is the sum of the
costs for removing a resource unit from the server. An action deterministically sets the
next allocation, while the uncertainty about demands is stochastic and exogenous.

We ran IVI and modified IVIs on instances with κ = 2, N = 3 and D = 3, defining
MDPs with 90 states and 10 actions. While the original version of IVI needs 188.65
queries to converge, by delaying the queries we reduce this number to 108.9. Prioritizing
the order in which the queries are asked further reduces the number of queries to 86.9.
Finally by using the heuristic that allows small mistakes in the first iterations of the
algorithm, we only need to ask 66.3 queries.

Coach. Finally, we present our experimental results on the “Coach” domain [3]. In this
problem, we need to provide assistance to a person with dementia accomplishing a daily-
life activity (e.g., handwashing) that is decomposed into T = {0, . . . , l} phases. In order
to aid the impaired person, different types of aids are available, modeled by actions
A = {0, . . . ,m} in the MDP; a ∈ A is a form of aid/assistance, each associated with
a different level of intrusiveness between 0 and m; 0 represents no prompt (no aid is
given), m−1 represents the most intrusive prompt and m means that a caregiver has to
be called (the most intrusive form of aid). The goal is to aid the person in completing
the task (reach the final phase l), with enough aid but avoiding being too intrusive.

A state in the MDP is described as a tuple (t, d, f) where t ∈ T is the current timestep,
d ∈ D = {0, 1, . . . , 4, 5} is the delay (time already spent in the current phase of the task)
and f ∈ A is the last prompt used. Transitions model the chance of “success”, i.e., the
probability that the person moves to the next phase t + 1. To model the effectiveness
of the aid, at each phase t < l of the task, the probability of success is increasing with
the level of intrusiveness of the action a; however the probability is decreasing with d
(the more the person has idled in the current phase, the less likely he will succeed). The
reward associated to taking action a in state (t, d, f) is defined by

r((t, d, f), a) = rgoal(t) + rprogress(d) + rdelay(d) + rprompt(a)

where rgoal(t) gives a large reward when the final phase is reached and 0 otherwise,
rprogress(d) is a small reward when making progress (i.e., passing to the next phase with
no delay, d = 0) and 0 otherwise, rdelay(d) is an increasing cost function and rprompt(a)
is an increasing cost function.

We ran IVI and our improved versions of IVI on instances with l = 14 and m = 6.
The original version of IVI needed 169.85 queries to converge. By delaying the queries we
reduced this number to 114.7. Prioritizing the order in which the queries where issued
curbed this score to 77.85. Finally by allowing small mistakes at the beginning of the
algorithm the number of queries issued decreased to 71.2.



5 Conclusion and Future Works

Interactive value iteration is an appealing procedure that mitigates the burden of defin-
ing the reward function of an MDP by interweaving the elicitation and resolution phases.
In order to find an optimal policy for an MDP, this procedure queries the tutor about
comparisons of multisets of rewards when needed. This paper presents modifications to
the original interactive value iteration algorithm that are shown to reduce substantially
the number of queries issued. The main ideas of the paper are that we can avoid unnec-
essary queries by delaying the querying phase, and reasoning about the order in which
we ask the query.

A natural extension of our work would be to explore new priority scores to guide the
querying process. For instance, a strategy alternative to the ones proposed in Section 3.1
would be to select the query that maximizes the expected reduction in the cardinality
of the set of non dominated vectors. This would be close to the idea of maximizing the
expected value of information [16]. Another idea is to work in the space of differences
of value vectors v − v′. Points v − v′ for which v � v′ (resp. v′ � v) would be labelled
+ (resp. −) and an SVM method would be used to find the hyperplane (going through
point 0) best separating + and − labels. The vector orthogonal to this hyperplane can
be interpreted as the most likely reward function given K. The next query would then
be the unsolved query closest to this hyperplane.

A more prospective research direction consists in enabling to ask queries on vectors
that do not belong to Q(s). In this direction, machine learning techniques are worth
investigating in order to determine the query that cuts most equally the polytope of
admissible reward functions.

Lastly, we intend to delay even more the querying phase by waiting several time steps
before asking queries. In this setting (similar to the one of multiobjective MDPs [20]),
sets Q(s) would not reduce to a singleton at the end of each iteration. Our preliminary
results in this direction (where we delay over 3 time steps) are promising and lead to
an even more important reduction of the number of queries. Indeed only ≈ 25 queries
are needed to solve a random MDP with 50 states, 5 actions and 10 ordinal rewards
(results averaged on 20 runs). However, the number of elements in the set of possible
value vector for each state can easily explode in this setting and we need to adapt our
algorithm to prevent this from happening.
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