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Abstract. This paper deals with proportional representation problems
in which a set of winning candidates must be selected according to the
ballots of the voters. We investigate the use of a new class of optimiza-
tion criteria to determine the set of winning candidates, namely mixture
operators. In a nutshell, mixture operators are similar to weighted means
where the numerical weights are replaced by weighting functions. In this
paper: (1) we give the mathematical condition for which a mixture oper-
ator is fair and provide several instances of this operator satisfying this
condition; (2) we show that when using a mixture operator as optimiza-
tion criterion, one recovers the same complexity results as in the utilitar-
ian case (i.e., maximizing the sum of agent’s utilities) under a light con-
dition; (3) we present solution methods to find an optimal set of winners
w.r.t. a mixture operator under both Monroe and Chamberlin-Courant
multi-winner voting rules and test their computational efficiency.

Keywords: Computational Social Choice · Inequality Measurement ·
Mixture Operators · Proportional Representation.

1 Introduction

This paper deals with multi-winner voting rules where one aims at electing a
subset of candidates rather than a single one. In multi-winner election rules,
a set of voters express preferences over a set of candidates. The objective is
then to determine k winning candidates such that each voter is satisfied by the
winning candidate that represents her. Multi-winner election rules are impor-
tant for both political elections (i.e., electing committees of representatives) and
multi-agent recommendation systems (e.g., choosing a set of dinning menus for a
conference) [10,27]. A key property for multi-winner voting rules is Proportional
Representation (PR), i.e., the proportional support enjoyed by the different can-
didates should be accurately reflected by the results of the elections.

Two multi-winner voting rules have been designed to account for PR, namely
Monroe’s Voting Rule [19] (abbreviated by MVR) and Chamberlin-Courant ’s
Voting Rule [5] (abbreviated by CCVR). In these two frameworks, a feasible
solution is characterized by a set of k winning candidates and an assignment
from winning candidates to voters. Each voter is then represented by the elected
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candidate assigned to her. While CCVR does not constraint the possible assign-
ments from winning candidates to voters, MVR imposes that the k sets consisting
of the voters represented by the same candidate should be equally sized. The
choice of the solution is then based on the ballots, where each voter ranks the
candidates from best to worst. Indeed, the solution chosen should maximize the
utilities of the voters, where the utility (i.e., satisfaction level) of a voter depends
on the rank she gave to the candidate assigned to her. In the utilitarian version
of MVR and CCVR, the goal is to find a solution maximizing the sum of voter’s
utilities. However, maximizing the sum of utilities can yield an unfair solution
as it compensates between the utilities of the different voters. Thus, several al-
ternative optimization criteria have been investigated for multi-winner voting
rules to address this problem. In CCVR, Betzler et al. proposed to maximize
the utility of the least happy voter [4]. This is known as the egalitarian version
of CCVR. However, maximizing the minimum utility value of the voters can be
considered extreme as it does not take into account the satisfaction of all but one
voter. To adress this issue, Elkind and Ismaili extended this approach to Ordered
Weighted Averages (OWAs) of utilities, which provides a smooth interpolation
between the egalitarian version and the utilitarian version of CCVR [11].

In this paper, we investigate the use of another aggregation operator, namely
Mixture Operators (MOs), to find an efficient and fair solution with CCVR and
MVR. In a nutshell, MOs are similar to weighted means where the numerical
weights are replaced by weighting functions. The solution sought with the MO
should be efficient in the sense that the vector of voter’s satisfactions should be
Pareto optimal (i.e., the utility of a voter cannot be improved without decreas-
ing the utility of another voter) and fair in the sense that the vector of voter’s
satisfactions should be well-balanced (which will be formalized later). MOs have
recently been investigated in multi-criteria decision making. Indeed, while those
operators (which are instances of Bajraktarević means) are not new, they have
received a renewed interest due to successful applications in data fusion [1, 24].

Regarding the complexity of PR problems, Procaccia et al. proved that win-
ner determination under the utilitarian versions of MVR and CCVR are both
NP-hard problems even if the utility values are based on approval ballots [23].
Similarly, for the egalitarian version of CCVR, Betzler et al. proved that winner
determination is NP-hard [4]. More positive results where obtained by resorting
to approximation algorithms or special structures of preferences. Approximation
algorithms for PR problems were given by Lu and Boutilier [16] and Skowron
et al. [28]. Betzler et al. showed that, for single-peaked preferences, winner de-
termination under CCVR is a polynomial time problem by designing a dynamic
programming solution method [4]. Their results where extended by Cornaz et
al. to the case of clustered single-peaked preferences [7]. Lastly, Skowron et al.
showed that, for single-crossing preferences, winner determination under CCVR
is also a polynomial time problem [29]. In this paper, we investigate the complex-
ity of solving PR problems under CCVR and MVR with an MO as optimization
criterion and show that we obtain the same complexity results as in the utilitar-
ian case under a light condition.
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The paper is organized as follows. Section 2 presents PR problems under
MVR and CCVR, introduces our notations and discusses the use of several cri-
teria to solve these problems. In Section 3, we present MOs and their properties.
In Section 4, we design several solution procedures to solve PR problems with
an MO criterion. Lastly, our numerical tests are presented in Section 5.

2 Proportional Representation

Let V = {1, . . . , n} be a set of n voters and C = {1, . . . ,m} be a set of m
candidates. A solution of the PR problem is a set of k winning candidates
{c1, . . . , ck} ⊆ C, and k sets Sj (j ∈ {c1, . . . , ck}), where Sj is the subset of
voters represented by candidate j. We recall that, while in MVR the sets Sj
should be of the same size, it is not the case in CCVR. Consequently, in CCVR,
a voter is always represented by the candidate she likes most in the set of k
winning candidates. We will denote by e = {c1, Sc1 ; . . . ; ck, Sck} any feasible so-
lution and by E the set of all feasible solutions. Each voter has preferences over
candidates. These preferences are expressed by a preference profile P of size mn,
where the ith column of P is the preference order of voter i. From profile P , we
derive nm utility values vij that represent the level of satisfaction of voter i if
she is represented by candidate j. Given a feasible solution e, the utility vi(e)
of voter i is then given by vij if i belongs to Sj in e. The PR problem aims at
determining a solution e ∈ E such that the utilities of the voters are maximized.
We assume that all utility values vi belong to some open interval1 D ⊂ R+ and
we denote by v(e) = (v1(e), . . . , vn(e)) ∈ Dn the vector2 giving the utilities of
each voter for solution e. A solution e1 will then be preferred to another solution
e2 if, globally, e1 satisfies more the voters than e2. This is formalized by an ag-
gregation criterion to maximize. More formally, given an operator F : Dn → R,
a solution e1 is preferred to a solution e2 if F (v(e1)) ≥ F (v(e2)). The problem
of finding an optimal solution is then written as follows:

max
e∈E

F (v(e)) (1)

The choice of the operator F is a key but difficult point. A “good” operator
should both enable to solve efficiently the maximization problem defined by
Equation 1 and ensure that the optimal solution found satisfies some desirable
theoretical properties, as for instance Pareto optimality.

Definition 1 Vector y∈Dn Pareto-dominates vector y′∈Dn if:

i) ∀i ∈ {1, . . . , n}, yi ≥ y′i ii) ∃i ∈ {1, . . . , n}, yi > y′i
A solution e is said to be Pareto-optimal iff there is no e′ ∈ E such that v(e′)
Pareto-dominates v(e).

Pareto optimality ensures that the solution is efficient in the sense that the utility
of a voter cannot be increased without decreasing the utility of another voter.

1 Considering an open interval simplifies the writing of Proposition 1 in Section 3.
2 Note that we follow the convention to use bold letters to represent vectors.
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We will say that an operator F is Pareto-compatible if any optimal solution of
maximization problem 1 w.r.t. operator F is Pareto-optimal. To ensure Pareto-
compatibility, operator F should be strictly increasing in each of its variables. In
this case, we will say that the operator is increasing. A simple class of increasing
operators is the class of Weighted Averages (WA) (with strictly positive weights):

Definition 2 Let w = (w1, . . . , wn) be a vector of weights. The WAw(·) operator
induced by w is defined by:

∀x ∈ Dn, WAw(x) =
∑n
i=1 wixi

Given a WA operator, a solution e is then evaluated by WAw(v(e)).

Optimizing a WA criterion is attractive due to the simplicity of this aggrega-
tion operator. In fact, the average operator used in the utilitarian version of PR
problems is a WA operator, with w1 = . . . = wn in order to treat each voter iden-
tically. However, such criterion may lead to an unfair solution as it compensates
between the utility values of the different voters. For instance, for two voters and
w = (1, 1), the utility vector (3, 10) is preferred to utility vector (6, 6) for the
WAw criterion. This is not satisfying as fairness should be an important property
for multi-winner voting problems. A natural condition that can be satisfied by
an operator to favor fairness is the Pigou-Dalton transfer principle [20]:

Definition 3 Pigou-Dalton Transfer Principle. Let x ∈ Dn such that xi > xj
for some i, j. Then, for all ε such that 0 < ε < xi − xj, x − εbi + εbj should
be strictly preferred to x where bi and bj are the vector whose ith (resp. jth)
component equals 1, all others being null.

The transfer principle states that a transfer from a “more satisfied” voter to a
“less satisfied” voter should improve a solution. Indeed, such a transfer reduces
inequality while keeping the arithmetic mean of the vector constant. We will say
that an operator is fair if it satisfies the Pigou-Dalton transfer principle.

A well known class of fair operators whose optimization yields a Pareto-
optimal solution is the class of Ordered Weighted Average (OWA) operators
with strictly decreasing weights [32].

Definition 4 Let w = (w1, . . . , wn) be a vector of weights. The OWAw(·) operator
induced by w is defined by:

∀x ∈ Dn, OWAw(x) =
∑n
i=1 wixσ(i)

where σ is a permutation of {1, . . . , n} such that xσ(1)≤xσ(2)≤. . .≤xσ(n). Given
an OWA operator, a solution e is then evaluated by OWAw(v(e)).

Note that both the average operator used in the utilitarian version of PR prob-
lems and the min operator used in the egalitarian version of PR problems are
OWA operators obtained by setting w = (1, . . . , 1) and w = (1, 0, . . . , 0) re-
spectively. PR problems with OWA operators as optimization criteria have been
investigated by Elkind and Ismaili [11]. The authors investigated several classes
of weights w defining families of OWA operators that allows for a compromise be-
tween the utilitarian and the egalitarian versions of PR problems under CCVR.
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Interestingly, they showed that if the preferences of the voters present particular
structures (e.g., single-crossing, single-peaked), then it becomes possible to de-
sign polynomial or pseudo-polynomial solution methods for some of these OWA
families. However, the validity conditions of these methods and the algorithms
themselves depend on the family of weights used.

In the next section, we present the class of operators that we will use as
optimization criteria, namely mixture operators. Contrary to OWA operators, the
way mixture operators weight the different components of a vector do not require
any reordering. After recalling the main properties of this class of operators, we
will give the condition under which they are fair. Interestingly, we will see that
mixture operators have some descriptive advantages over OWA operators.

3 Mixture Operators

In this section, we present Mixture Operators (MOs) and their relations to sev-
eral other operators.

Definition 5 Let w : D→ (0,∞] be a positive weighting function. The mixture
operator Mw(·) induced by function w is defined as follows:

∀x ∈ Dn,Mw(x) =
∑n
i=1

w(xi)∑n
j=1 w(xj)

xi

Given a mixture operator, a solution e ∈ E is then evaluated by Mw(v(e)).

MOs are special instances of Losonczi means [15], Bajraktarević means and gen-
eralized mixture functions [25]. On the other hand, MOs extend several averaging
operators as the Gini mean or the Lehmer mean. MOs resemble OWA and WA
operators but their weights depend on the values that are at stake in the evalu-
ated vector and not on the ranks of the components. Note that if function w is
constant then the MO boils down to the average operator used in the utilitarian
version of PR problems. Furthermore, the special case of the Lehmer mean is
defined by w(x) = xp−1 where p is a parameter. If p tends towards −∞, then
the Lehmer mean tends towards the min operator used in the egalitarian version
of PR problems. The following example illustrates the way an MO distorts the
weights of the voters.

Example 1 Let D = (0, U) and consider the weight function w defined by
w(x) = 2U − x. Then, given a solution e of the PR problem, the weight wi
associated to voter i is given by:

wi = w(vi(e))∑n
j=1 w(vj(e))

= 2U−vi(e)∑n
j=1 2U−vj(e) = 2U−vi(e)

n(2U−E)

where E =
∑n
j=1 vj(e)/n is the arithmetic mean of vector v(e). Thus, wi ≥

(resp ≤) 1/n if vi(e) ≤ (resp. ≥) E. Stated differently, if a voter’s utility is less
than the average utility of the voters, then she is given a greater weight in oper-
ator Mw. More generally, the more w is decreasing, the more operator Mw will
focus on the least satisfied voters. This property enables us to find compromises
between the utilitarian and the egalitarian variants of PR problems.
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Moreover, by using a weighting function w depending on voters’ utilities, MOs
are able to account for preferences that cannot be represented by OWA or WA
operators, as illustrated by the following example.

Example 2 Let n=2 and consider four solutions e1, e2, e′1 and e′2 such that:

v(e1) = (4, 8) v(e2) = (2, 12)
v(e′1) = (8, 8) v(e′2) = (6, 12).

Note that v(e′1) and v(e′2) are obtained from v(e1) and v(e2) by adding 4 to the
utility value of the first voter. In solution e2, voter 1 is strongly unsatisfied, so
one could prefer the more balanced solution e1 even if the average utility value of
the voters is lower with e1 than with e2. Conversely, in both solutions e′1 and e′2,
voters 1 and 2 are quite satisfied. Hence, one could prefer e′2 to e′1 as it yields
the highest average utility value. Accounting for both of these preferences is not
possible with a WA operator nor an OWA operator. Indeed, whatever the values
of the weights w = (w1, w2):

WAw(v(e′1)) = WAw(v(e1)) + 4w1 WAw(v(e′2)) = WAw(v(e2)) + 4w1

OWAw(v(e′1)) = OWAw(v(e1)) + 4w1 OWAw(v(e′2)) = OWAw(v(e2)) + 4w1

Hence, if preferences are represented by a WA or an OWA, the preference holding
between e1 and e2 should be the same as the one holding between e′1 and e′2.
However, by considering w(x) = 24− x, one obtains:

Mw(v(e1)) ≈ 5.78 Mw(v(e2)) ≈ 5.53
Mw(v(e′1)) = 8 Mw(v(e′2)) ≈ 8.4

which is consistent with the desired preferences.

MOs have recently received some attention in multi-criteria decision making
where their mathematical properties have been studied (e.g. monotonicity, or-
ness, . . .) [14,25].

Increasingness. Many works have been focused on the monotonicity of MOs [2,3].
Indeed, MOs are not increasing (and therefore not Pareto-compatible) in general.
For this reason, sufficient conditions to ensure the monotonicity of this operator
have been found. For instance, if D = (0, U) and if w(x) ≥ dw

dx (x)(U−x) for all x ∈
(0, U) with w increasing and piecewise differentiable, then Mw is increasing [18].
A simpler condition to impose monotonicity, if D ⊂ R+, is to have function
x→ w(x) decreasing and function x→ w(x)x increasing.

Interestingly, MOs have also been studied in decision making under risk. In-
deed, they are instances of both the Weighted Expected Utility (WEU) model [6]
and the decomposable Skew-Symmetric Bilinear (SSB) functions investigated by
Nakamura [21]. The properties of WEU functions and SSB functions w.r.t. risk-
sensitivity and stochastic dominance have been thoroughly investigated [6,12,21]
and these results can directly be used to entail results on MOs.

Fairness. We now give the condition under which MOs are fair (i.e., they satisfy
the Pigou-Dalton transfer principle). This condition is a consequence of a result
by Chew (Corollary 6 in [6]), who studied the consistency of WEU functions with
stochastic dominance. Indeed, the Pigou-Dalton transfer principle in inequality
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measurement coincides with consistency with second order stochastic dominance
in decision making under risk.

Proposition 1 ([6]) Assume that functions x → w(x) and x → w(x)x as well
as their first derivatives are continuous and bounded on D, then operator Mw(·)
is fair iff function x→ w(x)(x− y) is strictly concave on D for all y in D.

Proof. For completeness, we give the sketch of the proof.
Sufficiency: Note that given vectors x,y ∈ Dn:

Mw(x) ≥Mw(y)⇔
∑n
i=1

w(xi)∑n
j=1 w(xj)

xi ≥
∑n
i=1

w(yi)∑n
j=1 w(yj)

yi

⇔
∑n
i=1

∑n
j=1 w(yj)w(xi)xi ≥

∑n
i=1

∑n
j=1 w(yi)w(xj)yi

⇔
∑n
i=1

∑n
j=1 w(yj)w(xi)(xi−yj)≥0

In particular, for any vector x ∈ Dn,∑n
i=1

∑n
j=1 w(xj)w(xi)(xi−xj)=0.

Assume that function x → w(x)(x − y) is strictly concave on D for all y in D,
then function φy : x→

∑n
j=1 w(yj)w(x)(x− yj) is also strictly concave on D for

all y in Dn as w(y) > 0 for all y in D. Hence, by Lemma 2 in [8], if xε is obtained
from x ∈ Dn by an ε-transfer (i.e., xε = x + ε(bj − bi) with 0 < ε < xi − xj and
where bi is the ith canonical vector) then:∑n

i=1

∑n
j=1 w(xj)w(xεi)(x

ε
i−xj)>

∑n
i=1

∑n
j=1 w(xj)w(xi)(xi−xj) =0

Thus, Mw(xε)>Mw(x) and the MO satisfies the Pigou-Dalton transfer principle.
Necessity: We recall that D is an open interval. By contradiction, assume there
exists s ∈ D such that x → w(x)(x − s) is not strictly concave. Thus, there
exists x̂ and ε > 0 such that [x̂ − ε, x̂ + ε] ⊂ D and φs : x → w(s)w(x)(x − s)
is convex on [x̂ − ε, x̂ + ε]. Assume w.l.o.g. that s > x̂ and consider t ∈ D such
that t > s. As Q is dense in R and as w is bounded and continuous on D, t
can be chosen such that there exists k, l ∈ N∗ with φs(x̂) + (k/l)φs(t) = 0. Set
n = 2(l + k) and consider vectors x = (x̂, x̂, . . . , x̂︸ ︷︷ ︸

2l

, t, . . . , t︸ ︷︷ ︸
2k

) and s = (s, . . . , s︸ ︷︷ ︸
2(l+k)

).

Then, by construction, Mw(x) = Mw(s). Consider xε obtained by transferring ε
from one of the x̂ terms to another (increasing inequality). As in the sufficiency
part, as φs is convex on [x̂− ε, x̂+ ε], we have Mw(xε) ≥Mw(s) = Mw(x) which
violates the Pigou-Dalton transfer principle and concludes the proof. ut

The conditions of Proposition 1 can easily be met. For instance, a sufficient
condition, if D ⊂ R+, is to have function x → w(x)x concave and function
x→ w(x) convex (with at least one property being strict). Under this sufficient
condition, it is easy to see that the MO will be fair, as a Pigou-Dalton transfer
will increase (resp. decrease)

∑n
i=1 w(xi)xi (resp.

∑n
i=1 w(xi)).

If D=(0, U), examples of MOs that are increasing and fair on D can be defined
by using w(x)=1/(1+x) or w(x)=(α+1)Uα−xα with 0<α≤1. Indeed, in these
cases, function x→ w(x) is convex and decreasing on D and function x→ w(x)x
is strictly concave and increasing on D.

In the next section, we investigate the complexity of winner determination
in multi-winner voting rules with mixture operators.
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4 Complexity and Solution Methods

Let u denote the function defined on D by u(x) = w(x)x. By abuse of notation,
given a vector x ∈ Dn, we denote by u(x) the sum

∑n
i=1 u(xi) and by w(x) the

sum
∑n
i=1 w(xi). By using these notations, the definition of an MO Mw(·) can

be rewritten as follows:

∀x ∈ Dn,Mw(x) =

∑n
i=1 u(xi)∑n
j=1 w(xj)

=
u(x)

w(x)
(2)

Thus optimizing an MO entails the maximization of a ratio. Fractional program-
ming is a subfield of operational research dedicated to this type of objective func-
tions [9, 26, 30]. Several solution methods and techniques have been developed
in this domain to optimize objective functions taking the form of a ratio of two
linear objective functions. In this section, we will adapt and present two of these
methods. Note that the two algorithms we present could also be used with the
more general class of Losonczi means. The first one relies on a linearization trick
that we will use to design a mixed integer linear program to solve PR problems
w.r.t. an MO. The second one is a parametric approach that we will use to design
polynomial time algorithms to solve PR problems with an MO criterion when a
special structure of preferences makes it possible to solve the utilitarian version
of the PR problem in polynomial time.

4.1 A Mixed Integer Linear Program

Note that if function w is constant, then one recovers the utilitarian version of PR
problems which are NP-hard. Thus, it follows that PR problems under CCVR or
MVR with an MO are also NP-hard. Yet, the NP-hardness of winner determination
under CCVR and MVR has not prevented researchers from designing solution
procedures for these problems. Indeed, Brams and Potthoff investigated the use
of integer linear programs to solve PR problems [22]. We denote by IP the
integer program they proposed. Program IP is given below on the left side of
the page. It includes nm binary variables xij where xij takes value 1 if voter
i is represented by candidate j and m binary variables zj where zj takes value
1 if candidate j represents at least one voter. Constraint (4) ensures that the
election has k winning candidates. The n constraints in (5) make sure that each
voter is only represented by one candidate. Lastly, constraints (6) and (7) specify
a lower bound L and an upper bound U on the number of voters that can be
represented by the same candidate. The pair (L,U) in MVR (resp. CCVR) is
equal to (bn/kc, dn/ke) (resp. (0, n)).

Program IP can be adapted to obtain a Mixed Integer Linear Program
(MILP) MIPMO (given below on the right side of the page) to solve a PR
problem w.r.t. an MO. We now describe how it has been obtained. With the
MO Mw, the objective function becomes:∑

i,j∈V ·C u(vij)xij∑
i,j∈V ·C w(vij)xij

(3)
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IP



max
∑

i,j∈V ·C

vijxij∑
j∈C

zj = k

∑
j∈C

xij = 1, ∀i ∈ V

∑
i∈V

xij≥Lzj , ∀j ∈ C

∑
i∈V

xij≤Uzj , ∀j ∈ C

zj∈{0, 1}, ∀j ∈ C
xij∈{0, 1}, ∀i, j∈V ·C

(4)

(5)

(6)

(7)

MIPMO



max λ∑
j∈C

zj = k

∑
j∈C

xij = 1, ∀i ∈ V

∑
i∈V

xij ≥ Lzj , ∀j ∈ C

∑
i∈V

xij ≤ Uzj , ∀j ∈ C

∑
i,j∈V ·C

(w(vij)yij−u(vij)xij)=0

∑
j∈C

yij = λ, ∀i ∈ V

yij≤ xijλu, ∀i, j ∈ V ·C
zj∈{0, 1}, ∀j ∈ C
xij∈{0, 1}, ∀i, j ∈ V ·C

yij∈R+, ∀i, j ∈ V ·C
λ∈R

To linearize this objective function, we use the following general method pro-
posed by Williams [31]. Introduce a continuous variable λ into the problem to
represent the expression given in Equation 3. The objective is then to maximize
this variable. By definition of λ, the following condition should hold:∑

i,j∈V ·C w(vij)λxij −
∑
i,j∈V ·C u(vij)xij = 0

However, this equation is not linear in the variables of the problem because of the
quadratic terms λxij . Thus, to enforce this equation in program MIPMO, we
introduce nm continuous variables yij taking values in R+ to replace expressions
λxij . We then impose that yij = λxij with the following constraints:

yij ≤ xijλu, ∀i, j ∈ V · C (8)∑
j∈C

yij = λ, ∀i ∈ V (9)

where λu denotes an upper bound on λ. Such an upper bound can easily be ob-
tained by computing (maxu(vij))/(minw(vij)). While Eq. 8 ensures that yij = 0
if xij = 0, Eq. 9 ensures that yij = λ if xij = 1. Indeed, in Eq. 9, only one of
the yij is non null due to constraints 5 in program IP and Eq. 9 imposes that
this variable equals λ. The final program MIPMO involves nm + 1 additional
continuous variables and nm+ n+ 1 additional constraints.

4.2 A Parametric Approach

We now assume that the preferences of the voters have a particular structure
which makes it possible to solve the utilitarian version of the PR problem with



10 H. Gilbert

a polynomial time algorithm denoted by A. This is for instance the case for
single-peaked or single-crossing preferences with CCVR. Using algorithm A, we
provide two polynomial time methods to solve the PR problem w.r.t. an MO.
The first one follows from a method proposed by Megiddo [17] and the second
one is a cutting plane method. The only light condition required by these two
methods on the MO is that Mw should be an increasing MO with a decreas-
ing function w and an increasing function u. Indeed, both of these methods
require to solve utilitarian versions of the PR problem with utilities defined by
ṽλij = u(vij)− λw(vij) (λ ∈ R+). The previous condition on the monotony of w

and u ensures that utilities ṽλij are consistent with the preferences of the voters

(i.e., if voter i prefers candidate j1 to candidate j2 then ṽλij1 ≥ ṽ
λ
ij2

).

Megiddo’s method. The first method we present follows from a general method
designed by Megiddo [17]. This method is based on the following observation
(recasted in our PR setting):

Observation 1 Let λ ∈ R and consider utility values ṽλij = u(vij) − λw(vij).

Let eλ and vλ = u(v(eλ))− λw(v(eλ)) be the optimal solution and the optimal
value for the utilitarian version of the PR problem with utility values ṽλij. Then,

the sign of vλ is determined by the position of λ w.r.t. λ∗, where λ∗ is defined
as the optimal value w.r.t. Mw (i.e. λ∗ = maxe∈EMw(v(e))).

1. If λ=λ∗, then vλ=0 and eλ is an optimal solution according to MO Mw.
2. If λ>λ∗, then vλ will be strictly negative. Indeed, there exists no feasible

solution e ∈ E such that u(v(e))/w(v(e)) > λ.
3. On the contrary, if λ<λ∗, then vλ will be strictly positive.

Thus, the problem of solving a PR problem w.r.t. an MO reduces to the one
of solving the utilitarian version of the PR problem with utility values ṽλ

∗

ij =
u(vij) − λ∗w(vij) (case 1 of Observation 1). However, while values u(vij) and
w(vij) are known, the value of λ∗ is not. Thus, the values ṽλ

∗

ij are incompletely
specified. Nevertheless, if the utilitarian version of the PR problem can be solved
by an algorithm A relying on a polynomial number of additions/subtractions and
comparisons (which is the case for PR problems under CCVR with single-peaked
or single-crossing preferences), then this problem can be solved via Megiddo’s
method. In short, Megiddo’s method applied to the PR problem mimics algo-
rithm A to solve the utilitarian version of the PR problem with utility values
ṽλ

∗

ij . However, the method redefines the addition and the comparison operations
to handle the fact that λ∗ is unknown.

Management of the imprecisely known value of λ∗. Instead of having precise
values for ṽλ

∗

ij , the algorithm works with pairs of values (u(vij), w(vij)) for all

i in V and j in C and maintains a lower bound λl and an upper bound λu

over λ∗ (originally 0 and ∞). Thus ṽλ
∗

ij is only known to be in the interval

[u(vij)− λuw(vij), u(vij)− λlw(vij)].
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Redefinition of the addition operation. The additions and subtractions required
by algorithm A are simply replaced by componentwise additions and subtrac-
tions of pairs. Stated differently, the sum of (u(vij), w(vij)) and (u(vkl), w(vkl))
is (u(vij) + u(vkl), w(vij) + w(vkl)). Indeed, whatever the value of λ∗:

u(vij)− λ∗w(vij) + u(vkl)− λ∗w(vkl) = u(vij) + u(vkl)− λ∗(w(vij) + w(vkl)).

Redefinition of the comparison operation. To compare two pairs (u(vij), w(vij))
and (u(vkl), w(vkl)), Megiddo’s method uses the following routine.

A fist step consists in checking if u(vij)− λw(vij) is less (resp. greater) than
u(vkl) − λw(vkl), regardless of the value of λ ∈ [λl, λu]. Indeed, in that case
(illustrated on the left side of Figure 1 below), the algorithm can conclude that
u(vij)− λ∗w(vij) ≤ (resp. ≥) u(vkl)− λ∗w(vkl). Note that u(vij)− λw(vij) and
u(vkl)− λw(vkl) are linear functions of λ. Therefore, the method needs only to
check the inequality for values λl and λu.

If this first step does not conclude which pair is the minimum (case illustrated

on the right side of Figure 1), then the algorithm considers the value λ̂ such

that u(vij) − λ̂w(vij) = u(vkl) − λ̂w(vkl). Then, if we assume w.l.o.g.3 that
u(vij)− λlw(vij) < u(vkl)− λlw(vkl), we have:

∀λ ∈ [λl, λ̂], u(vij)− λw(vij) ≤ u(vkl)− λw(vkl) (10)

∀λ ∈ [λ̂, λu], u(vij)− λw(vij) ≥ u(vkl)− λw(vkl). (11)

Now, for the algorithm to conclude, it needs only to check if λ∗ ∈ [λl, λ̂] (in which

case, λu is set to λ̂) or λ∗ ∈ [λ̂, λu] (in which case, λl is set to λ̂). This is done by
testing the sign of the optimal value of the utilitarian version of the PR problem

with utility values ṽλ̂ij (see Obs. 1), which is computed by using algorithm A.

Note that this operation updates either λl or λu, which refines the value of λ∗

and enables us to perform more comparisons without rerunning algorithm A.

λ

f(λ)

λl λu

f(λ) = u(vij)− λw(vij)

f(λ) = u(vkl)− λw(vkl)

λ

f(λ)

λl λuλ̂

f(λ) = u(vij)− λw(vij)

f(λ) = u(vkl)− λw(vkl)

Fig. 1. Illustration of the two possible cases that can occur in the comparison routine.

Polynomial time complexity of the method. As Megiddo’s method mimics algo-
rithm A, it relies on a polynomial number of (redefined) additions and compar-

3 if, u(vij)− λlw(vij) > u(vkl)− λlw(vkl), just reverse inequalities 10 and 11.
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isons. As algorithm A (which is used in the comparison operator) is of poly-
nomial complexity, these two operations can be performed in polynomial time.
This proves the polynomial complexity of the method.

Cutting plane method. As shown by Equation 2, for a solution e∗ maximizing

Mw(v(e)), we have u(v(e∗))
w(v(e∗))≥

u(v(e))
w(v(e)) for all e in E . Replacing u(v(e∗))/w(v(e∗))

by λ∗, these inequalities rewrite as follows:

u(v(e))− λ∗w(v(e)) ≤ 0, ∀e ∈ E (12)

and the constraint is tight for e = e∗. Therefore, λ∗ is the minimal value such
that all inequalities in 12 are satisfied. This analysis yields the following Linear
Program (LP) LPMO:

LPMO


min
λ

λ

u(v(e))− λw(v(e)) ≤ 0 ∀e ∈ E
λ ∈ R

(13)

Even if the number of constraints in 13 may be exponential in m (as there is one
constraint per feasible solution), these constraints can be handled efficiently by
resorting to a cutting plane algorithm. A cutting plane algorithm makes it possi-
ble to solve an LP involving a set S of constraints, the size of which is exponential,
provided there exists a separation oracle. A separation oracle dynamically gener-
ates a violated constraint in S given the current optimal solution according to the
previously generated constraints, or states that there is no violated constraint
(in which case the current solution is optimal). In program LPMO, a separation
oracle to determine a most violated constraint amounts to solve the utilitarian
version of the PR problem with utilities defined by ṽλij = u(vij)− λw(vij). This
problem can be solved by algorithm A. As the complexity of A is polynomial, the
complexity of solving LPMO is polynomial by the polynomial time equivalence
of optimization and separation by resorting to the ellipsoid method [13].

In practice, one can resort to Dinkelbach’s method [9] for solving program
LPMO. Indeed, while Dinkelbach’s method has not a polynomial time guarantee,
it reveals more efficient in practice. In the setting of PR problems, this method
can be described as follows. Let eλ denote an optimal solution in E for the util-
itarian variant of the PR problem with utilities ṽλij (which can be obtained via

algorithm A). Program LPMO can be solved by computing a sequence of solu-
tions in E through the following recursive equation:

et+1 = eλt

where λt = u(v(et))/w(v(et)) = Mw(v(et)). The key point of this approach is
that the solutions generated in this way are of increasing values w.r.t the MO op-
erator. Indeed, a direct corollary from Observation 1 is that while Mw(v(et)) <
λ∗, Mw(v(et+1)) > Mw(v(et)). Note that, by definition of λ∗, we cannot have
Mw(v(et)) > λ∗. Therefore, the sequence (Mw(v(et)))t∈N is strictly increasing
until reaching λ∗. Value λ∗ is always reached after a finite number of iterations
as there is a finite number of values in {Mw(v(e)) : e ∈ E}. After a finite number
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of iterations, we will thus have Mw(v(et)) = Mw(v(et+1)) which means that an
optimal solution w.r.t. the MO has been found.

We now turn to our numerical tests in which the efficiency of the different
solution methods are compared.

5 Numerical Tests

In this section, we compare the execution times of the proposed solution methods
in two different experiments4. In both experiments, values vij are set to m −
rki(j) (where rki(j) denotes the rank of candidate j in the preference order of
voter i) and the weighting function w of the MO is defined by w(x) = 2m − x,
so that the transfer principle holds. Lastly, for an election with n voters, values
m and k were set to n/5 and n/20.

In the first experiment, we restrict ourselves to randomly generated single-
peaked preferences in the CCVR framework, and we compare the execution times
of the two methods presented in section 4.2, denoted by CP (for Cutting Plane)
and MEG (for Megiddo). The method CP is solved by using the Dinkelbach
method. In methods CP and MEG, the algorithm A used (see section 4.2) is
the dynamic programming algorithm proposed by Betzler et al. [4]. The average
computation times (in seconds) over 50 instances, as well as the average number
of calls to algorithm A, are given in Table 1 for instances with a number of voters
ranging from 100 to 1000.

We observe that both methods CP and MEG are very fast and require very
few calls to algorithm A. On these instances, method CP seems to perform best
and requires less calls to algorithm A.

Table 1. Evolution of the average computation time in seconds and the average number
of calls to algorithm A (nbc in the table) for methods CP and MEG as n increases.

n 100 200 300 400 500 600 700 800 900 1000

CP time <0.001 0.005 0.017 0.037 0.074 0.132 0.276 0.416 0.618 1.064
nbc 2.62 2.86 2.94 3.00 2.98 2.98 3.00 3.00 3.00 3.00

MEG time 0.001 0.017 0.064 0.171 0.370 0.676 1.461 2.360 3.872 6.981
nbc 3.42 7.18 8.90 11.32 11.94 12.40 13.34 14.32 16.20 15.04

In a second experiment, we compare the execution times of the two instantia-
tions ofMIPMO in the CCVR and MVR frameworks. We denote these programs
by MMO

CCV R and MMO
MVR. For each instance, the preferences of the voters were

generated uniformly at random. The average computation times (in seconds)
over 50 instances are given in Table 2 for instances with a number of voters
ranging from 50 to 100.

Obviously, we observe that solving those two programs are computationally
demanding. For instance, solving programs MMO

CCV R and MMO
MVR takes more

than 25 seconds for elections with 100 voters.

4 All methods were implemented in C++ using Gurobi version 5.6.3 to solve the LPs.
Times are wall-clock times on a 2.4 GHz Intel Core i5 machine with 8GB of RAM.
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Table 2. Evolution of the average computation time in seconds to solve programs
MMO

CCVR and MMO
MVR as n increases.

n 50 60 70 80 90 100

MMO
CCVR 0.79 1.19 2.22 3.35 13.45 28.52

MMO
MVR 1.01 1.60 3.30 5.34 14.78 25.66

6 Conclusion

We studied PR problems with MOs. We presented these operators and the condi-
tions under which they make it possible to find a fair solution for a PR problem.
We designed a MILP to solve PR problems w.r.t. an MO and presented two
other solution methods that are of polynomial complexity if the preferences of
the voters abid to a particular structure enabling to solve the utilitarian version
of the PR problem in polynomial time.

As future work, it would be worth investigating the extent to which the
methods presented here can be adapted to other domains requiring fairness. For
instance, it seems that they could also be used for the assignment problem. How-
ever, using MO for solving allocation problems where agents can receive several
goods seems more challenging as the weighting function would be applied to a
sum of utilities, which triggers new technical difficulties. Moreover, the results
presented here can be extended to Losonczi means and we plan to investigate if
those more general operators can yield new desirable properties for PR problems.
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