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Abstract

In the Markov decision process model, policies are usually evaluated by ex-
pected cumulative rewards. As this decision criterion is not always suitable, we
propose in this paper an algorithm for computing a policy optimal for the quantile
criterion. Both finite and infinite horizons are considered. Finally we experimen-
tally evaluate our approach on random MDPs and on a data center control problem.

1 Introduction
Sequential decision-making in uncertain environments is an important task in artificial
intelligence. Such problems can be modeled as Markov Decision Processes (MDPs). In
an MDP, an agent chooses at every time step actions to perform according to the current
state of the world in order to optimize a criterion in the long run. In standard MDPs,
uncertainty is described by probabilities over the possible action outcomes, preferences
are represented by numeric rewards and the expectation of future cumulated rewards is
used as the decision criterion. And yet, for numerous applications, the expectation of
cumulated rewards may not be the most appropriate criterion. For instance, in one-shot
decision-making problems an alternative and well motivated objective for the agent is
to insure a certain level of satisfaction with high probability.

In this paper we focus on the decision criterion that consists in maximizing a quan-
tile. Intuitively, the τ th quantile of a population is the value x such that 100 · τ percent
of the population is equal or lower than x and 100 · (1 − τ) percent of the population
is equal or greater than x. Optimizing a quantile criterion offers nice properties: i) no
assumption is made about the commensurability between preferences and uncertainty,
ii) preferences over actions or trajectories can be expressed on a purely ordinal scale,
iii) preferences induced over policies are more robust than with the standard criterion
of maximizing the expectation of cumulated rewards.
∗hugo.gilbert@lip6.fr
†paweng@cmu.edu
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As a result, maximizing a quantile is used in many applications. For instance, the
Value-at-Risk criterion [Jorion, 2006] widely used in finance is in fact a quantile. More-
over, in the Web industry [Wolski and Brevik, 2014; DeCandia et al., 2007], decisions
about performance or Quality-Of-Service are often made based on quantiles. For in-
stance, Amazon reports [DeCandia et al., 2007] that they optimize the 99.9% quantile
for their cloud services. More generally, in the service industry, because of skewed dis-
tributions [Benoit and Van den Poel, 2009], one generally does not want that customers
are satisfied on average, but rather that most customers (e.g., 99% of them) to be as
satisfied as possible.

Our contribution: We show that optimizing the quantile criterion amounts to solv-
ing a sequence of MDP problems using an Expected Utility criterion with a target utility
function. We provide a binary search algorithm using functional backward induction
[Liu and Koenig, 2006] as a subroutine for computing an optimal policy. Moreover,
we investigate some properties of the optimal policies in the finite and infinite cases.
Finally, we provide the results of experiments testing our algorithm in a variety of
settings.

The paper is organized as follows. Section 2 introduces the necessary background
to present our approach and state formally our problem. Section 3 presents the details
of our solving algorithm for the finite horizon case. Section 4 provides some theoret-
ical results in the infinite horizon case. In Section 5, we experimentally evaluate our
proposition. Section 6 discusses the related work and Section 7 concludes.

2 Background
In this section, we provide the background information necessary for the sequel.

2.1 Markov Decision Process
Markov Decision Processes (MDPs) offer a general and powerful formalism to model
and solve sequential decision-making problems [Puterman, 1994]. An MDP is formally
defined as a tupleMT = (S,A,P, r, s0) where T is a time horizon, S is a finite set
of states, A is a finite set of actions, P : S × A × S → R is a transition function with
P(s, a, s′) being the probability of reaching state s′ when action a is performed in state
s, r : S × A → R is a bounded reward function and s0 ∈ S is a particular state called
initial state.

In a nutshell, at each time step t, the agent knows her current state st. According
to this state, she decides to perform an action at. This action results in a new state
st+1 ∈ S according to probability distributionP(st, at, .), and a reward signal r(st, at)
which penalizes or reinforces the choice of this action. At time step t = 0, the agent
is in the initial state s0. We will call t-history ht a succession of t state-action pairs
starting from state s0 (e.g., ht = (s0, a0, s1, . . . , st−1, at−1, st)). We call episode a
T -history and denote E the set of episodes.

The goal of the agent is to determine a policy, i.e., a procedure to select an action
in a state, that is optimal for a given criterion. More formally, a policy π at an horizon
T is a sequence of T decision rules (δ1, . . . , δT ). Decision rules are functions which
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prescribe the actions that the agent should perform. They are Markovian if they only
depend on the current state. Moreover, a decision rule is either deterministic if it always
selects the same action in a given state or randomized if it can prescribe a probability
distribution over possible actions. A policy can be Markovian, deterministic or ran-
domized according to the type of its decision rules. Lastly, a policy is stationary if it
uses the same decision rule at every time step, i.e., π = (δ, δ, . . .).

Different criteria can be defined in order to compare policies. One standard crite-
rion is expected cumulated reward, for which it is known that an optimal deterministic
Markovian policy exists at any horizon T . This criterion is defined as follows. First,
the value of a history ht = (s0, a0, s1, . . . , st−1, at−1, st) is described as the sum of
rewards obtained along it, i.e., r(ht) =

∑t−1
i=0 r(si, ai). Then, the value of a policy

π = (δ1, . . . , δT ) in a state s is set to be the expected value of the histories that can
be generated by π from s. This value, given by the value function vπ1 : S → R can be
computed iteratively as follows:

vπT+1(s) = 0

vπt (s) = r(s, δt(s)) +
∑
s′∈S
P(s, δt(s), s′)vπt+1(s

′) (1)

The value vπt (s) is the expectation of cumulated rewards obtained by the agent if
she performs action δt(s) in state s at time step t and continues to follow policy π
thereafter. The higher the values of vπt (s) are, the better. Therefore, value functions
induce a preference relation %π over policies in the following way:

π %π π
′ ⇔ ∀s ∈ S,∀t = 1, . . . , T, vπt (s) ≥ vπ

′

t (s)

A solution to an MDP is a policy, called optimal policy, that ranks the highest with
respect to %π . Such a policy can be found by solving the Bellman equations.

v∗T+1(s) = 0

v∗t (s) = max
a∈A

r(s, a) +
∑
s′∈S
P(s, a, s′)v∗t+1(s

′)

As can be seen, the preference relation %π over policies is directly induced by the
reward function r.

The decision criterion, based on the expectation of cumulated rewards, may not
always be suitable. Firstly, unfortunately, in many cases, the reward function r is not
known. One can therefore try to uncover the reward function by interacting with an ex-
pert of the domain considered [Regan and Boutilier, 2009; Weng and Zanuttini, 2013].
However, even for an expert user, the elicitation of the reward function can be burden-
some. Indeed, this process can be cognitively very complex as it requires to balance
several criteria in a complex manner and as it can imply a large number of parameters.
In this paper, we address this problem by only assuming that we have a strict weak
ordering on episodes.

Secondly, for numerous applications, the expectation of cumulated reward, as used
in Equation 1, may not be the most appropriate criterion (even when a numeric reward
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function is defined). For instance, in the Web industry, most decisions about perfor-
mance are based on the minimal quality of 99% of the possible outcomes. Therefore,
in this article we aim at using a quantile (defined in Section 2.3) as a decision criterion
to solve an MDP.

2.2 Preferences over Histories
For generality’s sake, contrary to standard MDPs, we define in this work the reward
function to take values in a set R. Moreover, we assume that the values of histories
take values in a set W , called the wealth level space, and that the value of a history
ht = (s0, a0, s1, . . . , st) is defined by:

w(h0) = w0 w(ht) = w(ht−1) ◦ r(st−1, at−1)

where ht−1 = (s0, a0, s1, . . . , st−1), ◦ is a binary operation from W × R to W and
w0 ∈ W is the left identity element of ◦. LetWT ⊂ W be the set of wealth levels of
T -histories. We make three assumptions aboutWT :

• It is ordered by a total order �W , which defines how T -histories are compared,

• It admits a lowest element, denoted wmin and a greatest element, denoted wmax

for order �W .

• A distance consistent with �W is defined over WT . It is denoted d(w,w′) for
any pair (w,w′) ∈ WT ×WT .

Note that when a distance is defined, for any pair (w,w′), its set of mid-elements is
also defined mid(w,w′) = arg inf{max(d(w,w′′), d(w′, w′′)) |w′′ ∈ WT }.

In a numerical context, the possible wealth levels of a state are the possible sums
(resp. γ-discounted sums) of rewards that can be obtained during an episode. We have
wmax = RmaxT (resp. wmax = Rmax

(1−γ)T
1−γ ) withRmax being the highest reward and

mid(w,w′) = {(w + w′)/2}. In the most general case, the possible wealth levels of a
state are the possible histories (or more precisely their equivalent classes) that can be
obtained during an episode. Here, if the equivalence classes are known and denoted by
w1 ≺W w2 ≺W . . . ≺W wm and if d(wi, wj) = |j−i|, then wmin = w1, wmax = wm
and mid(wi, wj) = {wb(i+j)/2c, wd(i+j)/2e} (where bxcis the greatest integer smaller
than x and dxe is the smallest integer greater than x).

The goal of the agent is then to make sure that most of the time, it will generate
episodes that have the highest possible wealth levels. This can be implemented by
optimizing a quantile criterion as explained in the next subsection.

2.3 Quantile Criterion
Intuitively, the τ -quantile of a population of ordered elements, for τ ∈ [0, 1], is the
value q such that 100 · τ% of the population is equal or lower than q and 100 · (1− τ)%
of the population is equal or greater than q. The 0.5-quantile, also known as the median,
can be seen as the ordinal counterpart of the mean. More generally, quantiles define
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decision criteria that have the nice property of not requiring numeric valuations, but
only an order. They have been axiomatically studied as decision criteria by Rostek
[2010].

We now give a formal definition of quantiles. For this purpose we define the prob-
ability distribution pπ over wealth levels induced by a policy π, i.e., pπ(w) is the
probability of getting a wealth level w ∈ WT when applying policy π from the ini-
tial state. The cumulative distribution induced by pπ is then defined as Fπ where
Fπ(w) =

∑
w′�Ww p

π(w′) is the probability of getting a wealth level not preferred to
w when applying policy π. Similarly, the decumulative distribution induced by pπ is
defined as Gπ(w) =

∑
w�Ww′ p

π(w′) is the probability of getting a wealth level “not
lower” than w.

These two notions of cumulative and decumulative enable us to define two kinds of
criteria. First, given a policy π, we define the lower τ -quantile for τ ∈ (0, 1] as:

qπ
τ
= min{w ∈ WT |Fπ(w) ≥ τ} (2)

where the min operator is with respect to ≺W .
Then, given a policy π, we define the upper τ -quantile for τ ∈ [0, 1) as:

qπτ = max{w ∈ WT |Gπ(w) ≥ 1− τ} (3)

where the max operator is with respect to ≺W .
If τ = 0 or τ = 1 only one of qπ

τ
or qπτ is defined and we define the τ -quantile qπτ

as that value. When both are defined, by construction, we have qπ
τ
�W qπτ . If those two

values are equal, qπτ is defined as equal to them. For instance, this is always the case
in continuous settings for continuous distributions. However, in our discrete setting, it
could happen that those values differ, as shown by Example 1.

Example 1. Consider an MDP whereWT = {w1 ≺W w2 ≺W w3}. Now assume a
policy π attains each wealth level with probabilities 0.5, 0.2 and 0.3 respectively. Then
it is easy to see that qπ

0.5
= w1 whereas qπ0.5 = w2.

When the lower and upper quantiles differ, one may define the quantile as a function
of the lower and upper quantiles [Weng, 2012]. For simplicity, we show in this paper
how to optimize (approximately) the lower and the upper quantiles.

Definition 1. A policy π∗ is optimal for the lower (resp. upper) τ -quantile criterion if:

qπ
∗

τ
= max

π
qπ
τ

(resp. qπ
∗

τ = max
π

qπτ ) (4)

where the max operator is with respect to ≺W and taken over all policies π at horizon
T .

Even in a numerical context where a numerical reward function is given and the
quality of an episode is defined as the cumulative of rewards received along the episode,
this criterion is difficult to optimize, notably due to the two following related points:

• It is non-linear meaning for instance that the τ -quantile qπ̃τ of the mixed pol-
icy π̃ that generates an episode using policy π with probability p and π′ with
probability 1− p is not given by pqπτ + (1− p)qπ′τ .

5



• It is non-dynamically consistent meaning that at time step t, an optimal policy
computed in s0 with horizon T might not prescribe in state st to follow a policy
optimal in st for horizon T − t.

Three solutions are then possible [McClennen, 1990]: 1) adopting a consequentialist
approach, i.e., at each time step t we follow an optimal policy for the problem with
horizon T − t and initial state st even if the resulting policy is not optimal at horizon
T ; 2) adopting a resolute choice approach, i.e., at time step t = 0 we apply an optimal
policy for the problem with horizon T and initial state s0 and do not deviate from it; 3)
adopting a sophisticated resolute choice approach [Jaffray, 1998; Fargier et al., 2011],
i.e., we apply a policy π (chosen at the beginning) that trades off between how much π
is optimal for all horizons T, T − 1, . . . , 1.

With non-dynamically consistent preferences, it is debatable to adopt a consequen-
tialist approach, as the sequence of decisions may lead to dominated results. In this
paper, we adopt a resolute choice point of view. We leave the third approach for future
work.

As optimizing exactly a (lower or upper) quantile is hard, we aim at finding an
approximate solution. Let q∗

τ
and q∗τ be equal to the optimal lower and upper quantile

respectively.

Definition 2. Let ε > 0. A policy π∗ε is said to be ε-optimal for the lower (resp. upper)
τ -quantile criterion if d(qπ

∗
ε
τ
, q∗
τ
) ≤ ε (resp. d(qπ

∗
ε
τ , q∗τ ) ≤ ε).

3 Solving Algorithm
In this section, we present a technique for computing an ε-optimal policy for the quan-
tile criterion. Our approach amounts to solving a sequence of MDPs optimizing EU
with target utility functions (see Section 3.2).

3.1 Binary Search
In order to justify our algorithm, we introduce two lemmas that characterize the optimal
lower and upper quantiles1:

Lemma 1. The optimal lower τ -quantile q∗ satisfies:

q∗ = min{w : F ∗(w) ≥ τ} (5)

F ∗(w) = min
π
Fπ(w) ∀w ∈ W (6)

Note the last two equations can be equivalently rewritten:

q∗ = min{w : G∗≺(w) ≤ 1− τ} (7)

G∗≺(w) = max
π

Gπ≺(w) ∀w ∈ W (8)

where Gπ≺(w) = 1− Fπ(w) =
∑
w≺Ww′ p

π(w′).

1For lack of space, all proofs are in the supplementary material.
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Algorithm 1: Binary Search for the Lower Quantile (resp. Upper Quantile)
Data: MDPM, τ , ε
Result: an ε-optimal policy π

1 w ← wmax; w ← wmin; w ← mid(w,w)
2 while d(w,w) > ε do
3 (π, p) = solve(M, w);
4 if p > 1− τ (resp. p ≥ 1− τ ) then
5 w ← w; w ← max(mid(w,w)); π∗ ← π;
6 else
7 w ← w; w ← min(mid(w,w));

8 return π∗

Lemma 2. The optimal upper τ -quantile q∗ satisfies:

q∗ = max{w : G∗(w) ≥ 1− τ} (9)
G∗(w) = max

π
Gπ(w) ∀w ∈ W (10)

Given Lemmas 1 and 2 the problem now reduces to finding the right value of
w ∈ W that solves the problems defined by Equation 7 or 9. Our solving method is
based on binary search (see Algorithm 1) and on the function solve(M, w) that returns
a pair (π, p), the solution of the problems defined by Equation 8 or 10 for a fixedw, i.e.,
the max is equal to p and attained at π. Note that while for the upper quantile criterion,
solve(M, qπ

∗

τ ) returns an optimal policy, for the lower quantile, solve(M, qπ
∗

τ
) may

not if qπ
∗

τ
�W min(WT ). However, solve(M, prec(qπ

∗

τ
)) returns an optimal policy

where prec(w) is the most preferred element such that prec(w) ≺W w (see supple-
mentary material).

In the next subsection, we show how function solve can be computed for the lower
and upper quantile.

Note that whenWT is defined on the real line, Algorithm 1 needs only

dlog2 d(wmax, wmin)/εe

iterations to terminate by using [wmin, wmax] as WT . In the case where WT is fi-
nite, binary search can of course determine the optimal policy with ε = 1 and needs
dlog2(|WT |)e iterations.

The next proposition asserts that Algorithm 1 is correct:

Proposition 1. Algorithm 1 returns an ε-optimal policy for the lower (or upper) quan-
tile criterion.

3.2 Dynamic Programming
For / ∈ {≺W ,�W}, we denote by U/w : W → R the function, called target utility
function, defined as follows:

U/w(x) = 1 if w / x and 0 else. (11)
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Algorithm 2: FunctionalBackwardInduction
Data: MDPM, wealth w
Result: an optimal policy π

1 for all s ∈ S do
2 VT+1(s, .)← U/

w(.)

3 for t = T to 1 do
4 for all s ∈ S do
5 Vt(s, ·)← max

a

∑
s′∈S

P(s, a, s′)Vt+1(s
′, · ◦ r(s, a))

6 return (πV1 , V1(s0, w0)) \\ πV1= policy corresponding to V1

When optimizing the lower (resp. upper) quantile, function solve(M, w) can be
computed by solving MDPM using EU as a decision criterion with U≺Ww (resp. U�Ww )
as a utility function. Indeed, we have:

Eπ[U/w
(
w(HT )

)
] = P[w / w(HT ) |π]

where HT is a random variable representing a T -history and P[w /w(HT ) |π] denotes
the probability that π generates a history whose wealth is strictly better (resp. at least
better) than w when / =≺W (resp. / =�W ).

Following [Liu and Koenig, 2006], this problem can be solved with a functional
backward induction (Algorithm 2). For each state s, it maintains a function Vt(s, .)
which associates to each possible wealth level w the expected utility obtained by ap-
plying an optimal policy in state s for the remaining T − t time steps with w as initial
wealth level. At each time step (t = T, . . . , 1) this function is updated similarly as in
backward induction except that operations are not applied to scalars but to functions.
The max and × operations are extended over functions as pointwise operations. As
utility functions defined by Equation 11 are piecewise-linear, Vt(s, .) is also piecewise-
linear because all the operations in Line 5 of Algorithm 2 preserve this property.

Policies returned by Algorithm 2 have a special structure. They are deterministic
and wealth-Markovian:

Definition 3. A policy is said to be wealth-Markovian if its decision rules are functions
of both the current state and the current wealth level.

Besides, this is also the case for policies optimal with respect to the quantile crite-
rion.

Proposition 2. Optimal policies for the lower or upper quantile at horizon T can be
found as deterministic wealth-Markovian policies.

4 Infinite Horizon
We present in this section some results regarding the infinite horizon case. Similarly to
the finite horizon setting, the situation for the quantile criterion is not as simple as for
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Figure 1: Computation times vs state sizes for Functional Backward Induction.

the standard case. Indeed, in the infinite horizon case, it may happen that there is no
stationary deterministic Markovian policy that is optimal (w.r.t. the quantile criterion)
among all policies, contrary to standard MDPs.

Example 2. Consider an MDP with two states s1 and s2 and two actions a1 and a2.
In s1, the transition probabilities are P(s1, a1, s1) = 0.1, P(s1, a1, s2) = 0.9 and
P(s1, a2, s2) = 1. To make this example shorter, we assume that rewards depend on
next states. The rewards are r(s1, a1, s1) = 1, r(s1, a1, s2) = −1 and r(s1, a2, s2) =
1. In s2, the transition probabilities are P(s2, a1, s2) = P(s2, a2, s2) = 1. Rewards
are null for both actions in s2. Among all decision rules, there are only two distinct
rules: δ1(s1) = a1 and δ2(s1) = a2. To ensure that the values of histories are well-
defined, we assume that they are defined as discounted sum of rewards with a discount
factor γ = 0.9. One can then check that the 0.95-quantile of the stationary policy
using δ1 is 0.1, that of the stationary policy using δ2 is 1. Finally, the 0.95-quantile of
the policy applying first δ1 and then δ2 is 1.9. Therefore, no stationary deterministic
Markovian policy is optimal for the quantile criterion.

However, considering wealth-Markovian policies, some results can be given when
rewards are numeric and wealth levels are undiscounted:

Proposition 3. Optimal policies for the lower or upper quantile can be found as sta-
tionary deterministic wealth-Markovian policies in the two following cases:

(i) ∀(s, a) ∈ S ×A, r(s, a) ≤ 0.

(ii) ∀(s, a) ∈ S × A, r(s, a) ≥ 0. Furthermore, we require the existence of a finite
upper bound on the optimal lower and upper quantiles.

Then, a solving algorithm can be obtained from Algorithm 1 by replacing func-
tional backward induction (Alg. 2) by functional value iteration [Liu and Koenig, 2006]
in the binary search. This amounts to do the for loop over t (line 4) until convergence
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Figure 2: Computation times vs horizon for Functional Backward Induction.

of Vt, i.e., ‖Vt − Vt−1‖∞ ≤ ε′. Binary search will then return an (ε + ε′)-optimal for
the τ -quantile. However, note that in the first (resp. second) case, a lower (resp. upper)
bound on the optimal lower or upper quantile is required to do the binary search.

5 Experimental Results
We experimentally evaluated our approach on a server equipped with four Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2.60GHz and 64Gb of RAM. The algorithms were im-
plemented in Matlab and ran only on one core. We expect the running times to be
improved with a more efficient programming language and by exploiting a multicore
architecture.

We designed three sets of experiments. Although our approach could be used in
a preference-based setting, we performed the experiments with numerical rewards for
simplicity. The first shows the running time of functional backward induction for dif-
ferent varying state sizes on random MDPs. The second set of experiments shows the
running time of functional backward induction for different horizons on a data center
control problem with various number of servers. Finally, the third compares the cumu-
lative distributions of a policy optimal for the quantile criterion and a policy optimal
for the standard criterion on a fixed MDP.

The first set of experiments was conducted on Garnets [McKinnon and Thomas,
1995], which designate random MDPs with a constrained branching factor. A Gar-
net G(nS , nA, b) is characterized by nS a number of states, nA a number of actions
and b the number of successor states for every state and action. For our experiments,
nS ∈ {250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250} and we set nA = 5 and
b = dlog2 nSe. Rewards are randomly chosen in [0, 1] and the values of histories are
simply cumulated rewards. The horizon of the problem was set to 5. The results are
presented in Figure 1 where the x-axis represents the state size and the y-axis the com-
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putation time. Each point is the average over 10 runs. Naturally, computation times
increases with state sizes. In this setting, binary search would call functional backward
induction dlog2(1/ε)e = 10 times if ε = 10−3.

The second set of experiments was performed on a more realistic domain, which
is a data center control problem inspired by the model proposed by Yin and Sinopoli
[2014]. In this problem, one needs to decide every time step how many servers to switch
on or off, while maximizing Quality-of-Service and minimizing power consumption.
In the model proposed by Yin and Sinopoli, the two objectives are simply combined
into one cost, which defines our reward signal. The state is defined as the number of
servers that are currently on and the number of jobs that needs to be processed during
a time step. The action represents the number of servers that will be on at the next time
step. We assume for simplicity that the maximum number of jobs that can arrive at
one timestep is three times the total number of servers. For instance, in a problem with
n = 30 servers, the total number of states is 30×3×30 = 2700. Besides, the distribu-
tion of the next number of jobs is modeled as a Poisson distribution whose parameter
can be dn/2e, d3n/2e or d5n/2e (to model different regimes) depending on the current
number of jobs. Figure 2 shows the computation times of functional backward induc-
tion for n ∈ {20, 30, 40} and different horizons. We can see that for more structured
problems, the computation time is much more reasonable than on random MDPs.

In the last set of experiments, to give an intuition of the kind of policy obtained
when optimizing a quantile, we compare the cumulative distribution of a policy optimal
for the quantile criterion and that of a policy optimal for the standard criterion. This
experiment is performed on an instance of GarnetG(100, 5, dlog2 100e) whose rewards
are slightly modified to make the distribution of the optimal policy skewed, as it is
often the case in some real applications [Benoit and Van den Poel, 2009]. The horizon
is set to 5 and we optimize the 0.1-quantile with ε = 0.001 in binary search. The
two cumulative distributions are plotted in Figure 3. We can observe that although the
optimal policy for the standard criterion maximizes the expectation, it may be a risky
policy to apply as the probability of obtaining a high reward is low. On the contrary, the
optimal policy for the τ -quantile criterion will guarantee a reward as high as possible
with probability at least 1− τ .

6 Related Work
Much work in the MDP literature [Boussard et al., 2010] considered decision crite-
ria different to the standard ones (i.e., expected discounted sum of rewards, expected
total rewards or expected average rewards). For instance, in the operations research
community, White [1987] considered different cases where preferences over policies
only depend on sums of rewards: Expected Utility (EU), probabilistic constraints and
mean-variance formulations. In this context, he showed the sufficiency of working in
a state space augmented with the sum of rewards obtained so far. Recently, [Prashanth
and Ghavamzadeh, 2013] and [Mannor and Tsitsiklis, 2011] provided algorithms for
this mean-variance formulation. Filar et al. [1989] investigated decision criteria that are
variance-penalized versions of the standard ones. They formulated the obtained opti-
mization problem as a non-linear program. Several researchers [White, 1993; Bouakiz
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Figure 3: Comparison of cumulative distributions under the quantile criterion and stan-
dard criterion

and Kebir, 1995; Yu et al., 1998; Wu and Lin, 1999; Ohtsubo and Toyonaga, 2002;
Hou et al., 2014; Fan et al., 2005] worked on the problem of optimizing the probability
that the total (discounted) reward exceeds a given threshold.

Additionally, in the artificial intelligence community, [Liu and Koenig, 2005; 2006;
Ermon et al., 2012] also investigated the use of EU as a decision criterion in MDPs.
In the continuation of this work, Gilbert et al. [2015] investigated the use of Skew-
Symmetric Bilinear (SSB) utility [Fishburn, 1981] functions — a generalization of
EU with stronger descriptive abilities — as decision criteria in finite-horizon MDPs.
Interestingly, SSB also encompasses probabilistic dominance, a decision criterion that
can be employed in preference-based sequential decision-making [Busa-Fekete et al.,
2014].

Recent work in MDP and reinforcement learning considered conditional Value-
at-risk (CVaR), a criterion related to quantile, as a risk measure. Bäuerle and Ott
[2011] proved the existence of deterministic wealth-Markovian policies optimal with
respect to CVaR. Chow and Ghavamzadeh [2014] proposed gradient-based algorithms
for CVaR optimization. In contrast, Borkar and Jain [2014] used CVaR in inequality
constraints instead of as objective function.

Closer to our work, several quantile-based decision models have been investigated
in different contexts. In uncertain MDPs where the parameters of the transition and
reward functions are imprecisely known, Delage and Mannor [2007] presented and in-
vestigated a quantile-like criterion to capture the trade-off between optimistic and pes-
simistic viewpoints on an uncertain MDP. The quantile criterion they use is different to
ours as it takes into account the uncertainty present in the parameters of the MDP. Filar
et al. [1995] proposed an algorithm for optimizing the quantile criterion when histories
are valued by average rewards. In that setting, they showed that an optimal stationary
deterministic Markovian policy exists. In MDPs with ordinal rewards [Weng, 2011;
2012; Filar, 1983], quantile-based decision models were proposed to compute policies
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that maximize a quantile using linear programming. While quantiles in those works
are defined on distributions over ordinal rewards, we defined them as distributions over
histories.

More recently, in the machine learning community, quantile-based criteria have
been proposed in the multi-armed bandit (MAB) setting, a special case of reinforce-
ment learning. Yu and Nikolova [2013] proposed an algorithm in the pure explo-
ration setting for different risk measures, including Value-at-Risk. Carpentier and Valko
[2014] studied the problem of identifying arms with extreme payoffs, a particular case
of quantiles. Finally, Szörenyi et al. [2015] investigated MAB problems where a quan-
tile is optimized instead of the mean.

7 Conclusion
In this paper we have developed a framework to solve sequential decision problems in
a very general setting according to a quantile criterion. Modeling those problems as
MDPs we developed an offline algorithm in order to compute an ε-optimal policy and
investigated the properties of the optimal policies in the finite and infinite horizon cases.
Lastly, we provided experimental results, testing those two algorithms in a variety of
settings.

As future work, we plan to investigate how this work can be extended to the case of
reinforcement learning, a framework more involved than the one of MDPs where the
dynamics of the problems are unknown and must be learned.
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8 Supplementary material of “Optimizing Quantiles in
Preference-based Markov Decision Processes”

We provide in this section the proofs of our lemmas and propositions.

Lemma 1. The optimal lower τ -quantile q∗ satisfies:

q∗ = min{w : F ∗(w) ≥ τ}
F ∗(w) = min

π
Fπ(w) ∀w ∈ W

Proof. We recall that for any policy π, Fπ is nondecreasing and that consequently
F ∗ is also nondecreasing. Let w1 = maxπminw{w ∈ WT |Fπ(w) ≥ τ} and let
w2 = min{w : F ∗(w) ≥ τ}. By contradiction, assume w1 > w2. Then there exists
π such that Fπ(w1) ≥ τ and Fπ(w) < τ , ∀w < w1. Thus Fπ(w2) < τ which
contradicts the definition of w2. Now, assume w2 > w1. Then F ∗(w1) < τ . Thus,
there exists π such that Fπ(w1) < τ and qπ

τ
> w1 which contradicts the definition of

w1.

Lemma 2. The optimal upper τ -quantile q∗ satisfies:

q∗ = max{w : G∗(w) ≥ 1− τ}
G∗(w) = max

π
Gπ(w) ∀w ∈ W

Proof. We recall that for any policy π, Gπ is nonincreasing and that consequently G∗

is also nonincreasing. Let w1 = maxπmaxw{w ∈ WT |Gπ(w) ≥ 1 − τ} and let
w2 = max{w : G∗(w) ≥ 1− τ}. By definition of w1, there exists a policy π such that
Gπ(w1) ≥ 1− τ , thus G∗(w1) ≥ 1− τ and w2 ≥ w1. By definition of w2, there exists
a policy π such that Gπ(w2) ≥ 1 − τ , thus maxw{w ∈ WT |Gπ(w) ≥ 1 − τ} ≥ w2

and w1 ≥ w2.

The following example shows that F ∗(q∗) (see Equation 6) may not be attained by
an optimal policy (for the lower quantile):

Example 3. Let F1 and F2 be two cumulatives defined over three elements w1 ≺W
w2 ≺W w3 with the following probabilities: F1 = (0.5, 0.5, 1) and F2 = (0, 0.6, 1).
The lower 0.5-quantile of F1 is w1 and that of F2 is w2. Therefore the optimal lower
quantile is q∗ = w2. We have F ∗ = (0, 0.5, 1) and F ∗(q∗) = 0.5, which is attained by
F1.

This implies that solve(M, q∗) may return a non-optimal policy when q∗ �W
min(WT ). For w ∈ WT , we define prec(w) as the most preferred element of WT

such that prec(w) ≺ w. If there are no element w′ ∈ WT such that w′ ≺ w, prec(w)
is defined as w. The optimal policy can be found using the following property:

Lemma 3. Any policy π∗ such that Fπ
∗
(prec(q∗)) = F ∗(prec(q∗)) is an optimal

policy with regard to the lower quantile criterion.
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Proof. Assume that q∗ �W min(WT ). Otherwise the lemma is clearly true. As-
sume by contradiction that there is a non-optimal policy π such that Fπ(prec(q∗)) =
F ∗(prec(q∗)). Let q be the lower τ - quantile of policy π, q∗ be the optimal lower
quantile and π∗ be an optimal policy. By assumption, we have q �W prec(q∗) ≺W q∗

and Fπ
∗
(prec(q∗)) ≥ Fπ(prec(q∗)). As a cumulative is non-decreasing, we have

Fπ(prec(q∗)) ≥ Fπ(q) ≥ τ , which contradicts the fact that the lower quantile of π∗

is q∗.

Before proving that Algorithm 1 is correct, we introduce a lemma that gives suffi-
cient conditions for a policy to be approximately optimal.

Lemma 4. Let π be a policy for which there exists w such that d(w, q∗
τ
) ≤ ε (resp.

d(w, q∗τ ) ≤ ε) and:

Fπ(w) < τ (resp. Gπ(w) ≥ 1− τ).

Then π is ε-optimal for the lower (resp. upper) τ -quantile criterion.

Proof. Indeed, for such a policy, as Fπ(w) is nondecreasing (resp. Gπ(w) is nonin-
creasing), we have that qπ

τ
∈ [w, q∗

τ
] (resp. qπτ ∈ [w, q∗τ ]) and thus d(qπ

τ
, q∗
τ
) ≤ ε (resp.

d(qπτ , q
∗
τ ) ≤ ε) .

Proposition 1. Algorithm 1 returns an ε-optimal policy for the lower (or upper) quan-
tile criterion.

Proof. If WT ⊂ R we have seen that the algorithm terminates in
⌈
log2

d(wmax,0)
ε

⌉
iterations. In the most general setting, the algorithm terminates, because in the worst
case we will check all the m possible final wealth values. Let π be the policy returned
by the algorithm. For the lower (resp. upper) quantile, when the algorithm terminates,
d(q∗

τ
, w) (resp. d(q∗τ , w)) ≤ d(w,w) ≤ ε and Fπ

∗
(w) < τ (resp. Gπ(w) ≥ 1 − τ ).

Thus, we can apply Lemma 4 which concludes the proof.

Proposition 2. Optimal policies for the lower or upper quantile at horizon T can be
found as deterministic wealth-Markovian policies.

Proof. We recall that for the lower (resp. upper) quantile criterion, procedure solve(M, w)
returns the policy which minimizes Fπ(w) (resp. maximizes Gπ(w)). Thus, for any
policy π, by definition of quantiles, solve(M, prec(qπ

τ
)) (resp. solve(M, qπτ )) returns

a deterministic wealth-Markovian policy, which is at least as good as π regarding the
lower (resp. upper) quantile criterion. As the set of deterministic wealth-Markovian
policies is finite in the finite horizon case, taking the one with highest lower (resp.
upper) quantile concludes the proof.

Proposition 3. Optimal policies for the lower or upper quantile in the infinite horizon
setting can be found as stationary deterministic wealth-Markovian policies in the two
following cases:

(i) ∀(s, a) ∈ S ×A, r(s, a) ≤ 0.
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(ii) ∀(s, a) ∈ S × A, r(s, a) ≥ 0. Furthermore, we require the existence of a finite
upper bound on the optimal lower and upper quantiles.

Proof. We prove for the upper quantile and case (i), the other cases are similar. If all
policies have −∞ as quantile, they are all optimal. Now, if one policy has a finite
lower quantile q ∈ R−, the optimal quantile must be greater than or equal to q. From
the original MDP, consider the state-augmented MDP whose state space is defined by
S = {(s, w)|s, w ∈ S ×W}. In S, regroup all states having a wealth level strictly less
than q in a single absorbing state. Indeed, as the optimal upper quantile is greater than
q and r(s, a) ≤ 0, ∀s, a, the choices of the policies in those states are irrelevant to find
an optimal policy w.r.t the upper quantile criterion. Note that the resulting augmented
state space S<q is finite. In this MDP, we use reward functions parametrized by a value
x ∈ W defined as follows :

rx((s, w), a) =

{
−1 if w ≥ x and w + r(s, a) < x
0 else.

A policy solving this MDP w.r.t the expectation of total reward criterion maximizes
the probability of getting an episode with a wealth level greater than or equal to x.
According to Puterman (1994, Theorem 7.1.9), such a policy can be found as a station-
ary deterministic Markovian policy in the augmented MDP. Stated differently, there
exists a stationary deterministic wealth-Markovian optimal policy in the original MDP.
Then, for any policy π, the stationary deterministic wealth-Markovian policy which is
optimal when using reward function rqπτ (and expectation of total reward) is at least
as good as π regarding the upper quantile criterion. By partitioning those policies by
regrouping the ones that agree on S<q we reduce the set of stationary deterministic
wealth-Markovian policies to a finite set. By taking the “best one” in this set, we obtain
a stationary deterministic wealth-Markovian optimal policy.
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